Naval Surface Warfare Center Carderock Division

NAVSEA
WARFARE CENTERS
Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-50-TR-2007/059

September 2007

Hydromechanics Department Report

Axial Waterjet (AxWJ) Model 5662: Hull Resistance and Model-Scale Powering with LDV Nozzle Design

By Dominic S. Cusanelli and Scott A. Carpenter

AxWJ Model 5662 powering test with LDV survey underway

20071101400

Approved for public release. Distribution Unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE Final	3. DATES COVERED (From - To) Dec 2006 - Feb 2007	
odel 5662: Hull Resistance and	5a. CONTRACT NUMBER	
	5b. GRANT NUMBER	
	5c. PROGRAM ELEMENT NUMBER	
	5d. PROJECT NUMBER	
d Scott A. Carpenter	5e. TASK NUMBER	
	5f. WORK UNIT NUMBER 06-1-5030-105/6	
ME(S) AND ADDRESS(ES) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER	
enter	District Annual Control of the Contr	
	NSWCCD-TR-2007/059	
i		
-5700		
NCY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)	
875 North Randolph St. Arlington VA 22203		
Project Mgr: Ki-Han Kim		
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	227	

Approved for public release. Distribution Unlimited.

13. SUPPLEMENTARY NOTES

Technical Point of Contact for the waterjet designs is Stuart Jessup (Code 503)

This report is a partial documentation of the first series of model-scale tests conducted 12/06-2/07, to evaluate the Axial Waterjet (AxWJ), Model 5662, on the Joint High Speed Sealift (JHSS) hull platform. This document contains calm water resistance and model-scale powering test results only.

Bare hull effective powers were determined for the AxWJ hull at three displacement conditions. Appended effective power was determined for the AxWJ hull with the LDV waterjet nozzles installed, at design displacement. Bare hull and appended effective powers for AxWJ were compared to those of the JHSS Baseline shaft & strut (BSS) hull.

Model scale rotor force measurements were recorded for the AxWJ under power. These tests were conducted with waterjet nozzles specifically designed for the purpose of LDV flow survey measurements. During testing, the transom flow was observed to impinge on the nozzle hardware included for LDV measurement purposes, resulting in additional hull drag and power.

15. SUBJECT TERMS Joint High Speed Sealift (JHSS), Axial Waterjet

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NO. OF PAGES	19a. RESPONSIBLE PERSON Dominic S. Cusanelli	
a.REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED	c. THIS PAGE UNCLASSIFIED	SAR		19b. TELEPHONE NUMBER 301–227–7008

	OMB No. 0704-0188 (continued)
14. ABSTRACT (continued) Detailed powering analysis derived from the LDV arincluding full-scale powering predictions, will be report	
including full-scale powering predictions, will be report	ted in a separate document.

CONTENTS	Page
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
HULL MODEL	2
Construction	2
Appendage Configurations	3
Instrumentation for Resistance and Powering	4
Displacement, Trim and Wetted Surface	5
MODEL TEST RESULTS	5
Bare Hull Resistance	5
Appended Resistance - LDV Nozzle Design Implications	6
Model-Scale Rotor Forces: Ship Propulsion Point As Tested	6
Model-Scale Rotor Forces: Over and Under-Propulsion	7
Model-Scale Rotor Forces: Estimated At Corrected Ship Propulsion Point	7
Model Test Uncertainties - Resistance & Rotor Force Measurements	8
Dynamic Sinkage and Pitch	8
ROM ESTIMATE OF AxWJ FULL-SCALE POWERING	8
COMPARISONS BETWEEN AXWJ AND JHSS BASELINE BSS	9
CONTINUATION OF WORK	10
CONCLUSIONS	11
ACKNOWLEDGMENTS	12
REFERENCES	13
APPENDIX A: AxWJ Model 5662 Resistance & Powering Data	A1
APPENDIX B: AxWI Model 5662 Photographs	R1

	FIGURES	Page
1.	Axial Waterjet (AxWJ) Model 5662 with LDV nozzles and Gooseneck Bulb	2
2.	Model 5662 waterjet stern plug assembly	3
3.	Model 5662 LDV nozzles assembly	3
	TABLES	Page
1.	AxWJ ship hydrostatics, in brief, utilized herein	5
2.	AxWJ bare hull effective powers, selected speeds	6
3.	AxWJ preliminary rough order of magnitude (ROM) powering estimate	9
4.	Comparison between AxWJ preliminary rough order of magnitude (ROM) powering estimate and JHSS baseline BSS powering prediction	10

ABSTRACT

This report is a partial documentation of the first series of model-scale tests conducted 12/06-2/07, to evaluate the Axial Waterjet (AxWJ), Model 5662, on the Joint High Speed Sealift (JHSS) hull platform. This document contains calm water resistance and model-scale powering test results only.

Bare hull effective powers were determined for the AxWJ hull at three displacement conditions. Appended effective power was determined for the AxWJ hull with the LDV waterjet nozzles installed, at design displacement. Bare hull and appended effective powers for AxWJ were compared to those of the JHSS Baseline shaft & strut (BSS) hull.

Model-scale rotor force measurements were recorded for the AxWJ under power. These tests were conducted with waterjet nozzles specifically designed for the purpose of LDV flow survey measurements. During testing, the transom flow was observed to impinge on the nozzle hardware included for LDV measurement purposes, resulting in additional hull drag and power.

Detailed powering analysis derived from the LDV and pressure tap measurements, including full-scale powering predictions, will be reported in a separate document.

ADMINISTRATIVE INFORMATION

Funding for the evaluation of the Axial Waterjet on the JHSS hull platform was through the Office of Naval Research, "ONR Compact High Power Density Waterjet FNC Program", Project Manager Ki-Han Kim (ONR 331). The US Navy's Sealift R&D Program is managed through the Strategic & Theater Sealift Program Office PMS 385. The Joint High Speed Sealift (JHSS) Program Project Manager is William Davison (PMS 385). The JHSS Hydro Working Group (HWG), which includes representatives from NAVSEA, NSWCCD, ONR and CSC, coordinates all hydrodynamic, propulsion, hullform, and structural loads R&D for these combined programs.

Model tests were conducted at the David Taylor Model Basin, Naval Surface Warfare Center, Carderock Division Headquarters, (NSWCCD), by the Resistance & Powering Division (Code 5200) and the Propulsion and Fluid Systems Division (Code 5400), under work unit numbers 06-1-5030-105/106.

INTRODUCTION

The Joint High Speed Sealift (JHSS) was a potential FY12 ship acquisition sponsored by OPNAV N42. The program was originally designated the Rapid Strategic Lift Ship (RSLS) as outlined in "Rapid Strategic Lift Ship Feasibility Study Report" [Ref. 1]. In the "Joint High Speed Sealift (JHSS)" presentation [Ref. 2], the ship's capability was broadly described as being able to "Embark design payload, transport it 8,000 nm at 36 knots or more, and disembark it to a seabase or shore facility". Under the auspices of several Program Offices, three different types of propulsion systems are being evaluated on the JHSS hull platform: (1) conventional open propellers on shafts and struts, (2) waterjet propulsion, and (3) pod propulsion.

The entire evaluation of waterjet propulsion on the JHSS hull platform is to include the construction and testing of two model hulls, the Axial Waterjet (AxWJ) Model 5662, and the Mixed-Flow Waterjet (MxWJ) Model 5662-1. The extensive testing planned for the two waterjet models, which will extend over a period of more than eight months, as well as details pertaining to the design of the waterjets, will be summarized in a single volume after the conclusion of the test programs and analysis period. In the interim, several reports of smaller scope, documenting single series of experiments, will be prepared.

This report is the documentation of the first series of model-scale calm water resistance and powering tests, conducted 12/06-2/07, on the AxWJ Model 5662. The scope of testing within this first series is outlined in the Test Agenda, Appendix A, Table A1. This document is intended to be a record of the model test resistance and powering data with analysis presented for resistance only. Powering analysis for waterjets requires a significant scope of testing to define mass flow and pressures within the waterjet system. This subsequent testing and analysis on the AxWJ model data and full-scale predictions of waterjet powering on this hull, as well as the testing and analysis of the MxWJ, will be reported in subsequent documents.

HULL MODEL

Resistance and propulsion Model 5662, representative of the Axial Waterjet (AxWJ) propulsion variant of the JHSS hull platform, built of fiberglass to a linear scale ratio $\lambda = 34.121$, and LBP = 27.86 ft (8.5 m), was manufactured at NSWCCD. Photographs of completed Model 5662 with LDV nozzles installed are presented in Figure 1. The AxWJ Model 5662 scale ratio is equivalent to that of the JHSS Baseline Shaft & Strut (BSS) hullform Model 5653 [Ref. 3].

Fig 1. Axial Waterjet (AxWJ) Model 5662 with LDV nozzles and Gooseneck Bulb

Construction

The Axial Waterjet (AxWJ) Model 5662 hull is essentially comprised of two half-models, a bow half and a stern half, separable at a part-line at Station 10 amidships, allowing interchangeable stern sections to be tested: AxWJ Model 5662 and subsequent Mixed-Flow Waterjet (MxWJ) Model 5662-1. Both bow and stern sections were built using a 3/8-inch fiberglass composite hull, decking, and bulkheads to reduce weight and cost. Photographs taken throughout the construction and equipment outfitting phases of AxWJ Model 5662 are presented in Appendix B, Figure B1. Prior to and during this initial test series, AxWJ Model 5662, both bow and stern sections, were painted black.

The bow section included a cut-out (demarked by edge of black painted surface and white fairing tape) for interchangeable bow designs as well. For this test series, the Gooseneck Bulb (GB), painted grey, was installed on Model 5662, as shown in Figure 1. The GB was selected as the optimal tested bow design for the JHSS hull platform during the BSS Series 1 tests [Ref 3].

A unique feature of AxWJ stern half-model was its construction with a cut-out into which a large waterjet stern plug assembly containing the waterjets and LDV mount points was installed. The waterjet stern plug was manufactured in four sections using a stereolithography¹ apparatus (SLA) process, and joined together before being mated with the hull, Figure 2.

Integrated features of the AxWJ Model 5662 waterjet stern plug included:

- · inlet and pump chamber geometry
- · LDV measurement hardware mounts
- · LDV window mounts
- internal pressure tap passages
- · fwd impeller shaft bearing mounts
- · fastener and location holes

Fig 2. Model 5662 waterjet stern plug assembly

The nozzle/stator assembly was also fabricated using the SLA process. Rather than retaining individual nozzles, the LDV nozzles were installed as a single large assembled unit that included both the waterjet nozzle components necessary for propulsion and components necessary for conducting the LDV and pressure tap measurements, Figure 3. The LDV nozzles design did not include steering or reversing buckets, which would be a necessary component of any full-scale waterjet installation.

Each nozzle included design items necessary for propulsion:

- · the nozzle
- · integrated stator blades and hub
- rear impeller shaft bearing mount
- · water passage for bearing cooling

The LDV nozzles assembly included design items necessary for conducting the LDV and pressure tap measurements:

- external structures above the nozzles necessary to enclose the LDV water baths
- internal pressure tap passages

Fig 3. Model 5662 LDV nozzles assembly

The drive assembly of the model included machined composite impellers on four impeller shafts. These shafts were connected to dynamometers for the measurement of thrust and torque on each impeller shaft.

Appendage Configurations

The bare hull configuration of the AxWJ was represented on Model 5662 with the waterjet inlets (intakes) covered by thin galvanized metal plates cut to the shape of the inlets, and affixed

¹ Stereolithography is rapid manufacturing / prototyping technology additive fabrication process utilizing a vat of liquid UV-curable photopolymer resin and a UV-laser to build parts a layer at a time. On each layer, the laser traces a part cross-section pattern on the surface of the liquid resin. Exposure to the UV-laser light solidifies the pattern traced on the resin and adheres it to the layer below.

to the model with white fairing tape, as shown in Figure B2. The propulsion nozzles were not installed, and in their place was another metal plate installed flush with the vertical transom, covering the waterjet exits, again faired with white tape.

The appended resistance experiments were conducted with the LDV nozzles installed on the model, but with the waterjet inlets (intakes) remaining covered. In addition, when the inlets were opened for powering tests, right-angle ("L" shaped) pitot tubes were installed under the hull at waterjet station 1. These pitot tubes are shown in selected photographs of Figure B1.

In order to conduct Laser Doppler Velocimetry (LDV) measurements in the waterjet nozzles, which were an integral part of the initial series of experiments on the AxWJ Model 5662, a special so-named "LDV nozzle" design was employed. This nozzle design incorporated large external structures above the nozzles to enclose water baths necessary for the LDV system, as shown in Figure B3. The LDV nozzles also extended further aft, and protruded slightly outboard, of what would be expected of a propulsion-only designed nozzle. Consequently, during testing, the transom flow was observed to impinge on the LDV nozzles specific hardware, resulting in additional hull drag.

To produce turbulent flow along the model, turbulence stimulator study of 1/8 inch diameter by 1/10 inch height, spaced 1 inch apart, were affixed to the model approximately 2 inches aft of the stem, and continuing down to and around the bulb approximately 2 inches aft of the FP.

Instrumentation for Resistance and Powering

The linear bearing, floating platform "Cusanelli" tow post [Ref. 4], was utilized for the forward attachment point of the model to the towing carriage. Mechanical connection between the tow post and model was made through a double-axis gimbal assembly. When attached through the floating platform tow post system, the model is restrained in surge, sway, and yaw, but is free to pitch, heave, and roll. The location of the model tow point was approximately ship Station 5, parallel to, and at the same level as, the design waterline (DWL). For the aft attachment point, the standard 'grasshopper' bracket was utilized, attached at approximately ship Station 15. The counter weights and vertical arm were balanced, in place, so that the arm would not impart any vertical force on the model.

Model resistance (drag) measurements were collected using a DTMB 4-inch block gauge, of 200 lbf. capacity. Model side force measurements were collected with a DTMB 4-inch block gauge, of 50 lbf. capacity. Side force is monitored at the tow post attachment point during calm water experiments in order to maintain an essentially zero side force to insure zero yaw angle. Dynamic sinkage (defined as positive downward) was measured by wire potentiometers, which were located at the intersection of the deck line at Station 6 forward and Station 15 aft.

The thrust and torque on all four rotor shafts were measured with Kempf and Remmer's (K&R) model R31 dynamometers, of 22lbf. thrust (T) / 35in-lbf. torque (Q) capacity. To insure equivalent shaft rotational speed (RPM), rotor shaft pairs, port and starboard, were driven through 1:1 drive ratio "T" gearboxes and coupled so that both shaft pairs were each powered by a single constant-torque electric drive motor. The two drive motors were electronically synchronized to maintain nominally equivalent RPM. Shaft rotation for all four rotors was inboard-over-the-top. A 60 tooth wheel and magnetic pickup / pulse counter system was used to determine shaft RPM, for each shaft pair.

Calibration of all aforementioned instrumentation was performed prior to the tests in the NSWCCD Code 5200 calibration lab by D. Mullinix (CSC contractor).

Displacement, Trim, and Wetted Surface

AxWJ bare hull resistance tests were conducted at the three JHSS hullform displacement conditions, the design displacement (DES) of 36,491 tons, a light displacement (LITE) of 32,841 tons representing a 10 percent reduction in displacement from design, and a heavy displacement

(HVY) of 40,140 tons representing a 10 percent increase in displacement from design. All conditions were ballasted at static even keel (zero trim). Appended resistance and powering tests were conducted at only the DES displacement.

Hull hydrostatic calculations were made for the AxWJ bare hull, at each displacement condition, using the Code 5200 proprietary program "Hydro". However, unbeknownst to the authors, prior to the test series two different electronic hull surface geometry files had been circulated. The first surface file, from which Model 5662 had been constructed, did not contain a centerline skeg. The second file, from which all of the pre-test hydrostatic calculations were derived, included a centerline skeg. This discrepancy was not discovered until well after the completion of this and the subsequent three waterjet test series. Therefore, incorrect values of wetted surfaces (higher values, with skeg) were calculated and utilized throughout the model test series. Post-test, hull hydrostatic calculations were determined with the correct model configuration, as tested, without centerline skeg. Presented in Table A2 are the hull hydrostatic calculations for the AxWJ at design displacement (DES), and the ship/model test parameters for each displacement, corresponding to the model configuration without a centerline skeg, as tested.

Adjustments were made in the post-test re-analysis of the AxWJ Model 5662 data to account for these changes in wetted surfaces. Table 1 presents the ship hydrostatic values, in brief, utilized for the analysis presented herein, corresponding to the correct model configuration, as tested, without centerline skeg.

AxWJ	Design (DES)	Heavy (HVY)	Light (LITE)
DISPLACEMENT (tons)	36491	40140	32841
LWL (ft)	979.4	948.5	981.6
WETTED SURFACE (ft ²)	96696	100380	92896
DRAFT (ft)	28.3	30.1	26.5

Table 1. AxWJ ship hydrostatics, in brief, utilized herein

MODEL TEST RESULTS

Resistance and powering test data and analysis for the Axial Waterjet (AxWJ) Model 5662 are presented in Appendix A. The ship-model correlation allowance of $C_A = 0.0$ was recommended by NSWCCD Code 5200 based on the NAVSEA guidance as modified by more recent correlation allowance experience. The value of $C_A = 0.0$ was agreed upon by the JHSS Hull Working Group (HWG). Effective power predictions are made for the full-scale AxWJ operating in smooth, deep, salt water, with a uniform standard temperature of 59°F.

Bare Hull Resistance

Bare hull resistance experiments were conducted on AxWJ Model 5662, at the three displacements, DES, HVY, and LITE. Tests were conducted across the speed range of 15 to 45 knots. Again, bare hull was represented with the waterjet inlets (intakes) and waterjet outlets covered by metal plates, and the LDV nozzles were not installed. The bare hull effective power (PE) predictions for the full-scale AxWJ, at three displacements, are presented and compared in Figure A1 and Tables A3-A6, and summarized at selected speeds in Table 2. The presented bare hull PE predictions have been adjusted to reflect the correct hull hydrostatics (Table 1) corresponding to the hull configuration without a centerline skeg. For the AxWJ, relative to the DES displacement, the 10% increase in displacement (HVY) resulted in a 10.4% average increase in resistance across the speed range, and conversely, the 10% reduction in displacement (LITE) resulted in an average 9.9% reduction in resistance.

Table 2. AxWJ bare hull effective powers, selected speeds

	Design (DES)	Heavy (HVY)		Light (LITE)		
VS (knots)	PE (hp)	PE (hp)	Δ PE (%)	PE (hp)	Δ PE (%)	
25	29492	33237	+12.7%	25511	-13.5%	
36	85242	95107	+11.6%	76820	-9.9%	
39	127665	143358	+12.3%	115258	-9.7%	

A comparison of the AxWJ predicted bare hull PE at DES displacement to that of the pre-test estimated PE², over the speed range of 15 to 40 knots, is presented in Figure A2 and Table A6. The AxWJ data shows a PE varying within ± 4% that of the pre-test estimate over the speed range of 15 to 35 knots. At speeds of 36 knots and above, the model test predicted PE begins to diverge from the pre-test estimate, constantly exhibiting a higher value. Across the speed range, the model test PE prediction averages 1.4% higher than that of the pre-test estimate.

Appended Resistance - LDV Nozzle Design Implications

The LDV nozzles assembly had large vertical surfaces to house the water bath, and extended further aft and protruded slightly further outboard, than what would be expected of propulsion-only designed nozzles. Consequently, during testing, the transom flow was observed to impinge on the LDV nozzles specific hardware. This flow impingement would result in additional hull drag greater than that associated with standard propulsion-only designed nozzles. In order to determine the added resistance due to the LDV nozzle design, the following resistance condition was examined. The LDV nozzles assembly was installed while the waterjet inlets (intakes) remained covered. This resistance evaluation was conducted at only the seven powering test speeds (i.e. 15, 20, 25, 30, 36, 39, and 42 knots). The appended PE of the AxWJ with the LDV nozzles installed was compared to the bare hull PE, and is presented in Figure A3 and Table A7. The appended PE prediction is adjusted to reflect the correct hull hydrostatics. Averaged across the seven tested speeds, in the range of 15 to 42 knots, the AxWJ with the LDV nozzles installed exhibited a PE of 3.0% higher than that of the bare hull. The largest increase was measured at 30 knots, where the LDV nozzles increased the PE by 4.9%.

Model-Scale Rotor Forces: Ship Propulsion Point, As Tested

The Model 5662 powering experiments were conducted at seven powering test speeds of 15, 20, 25, 30, 36, 39, and 42 knots (equivalent full-scale). Photographs of Model 5662 during the powering tests, both with and without the LDV system operating (speeds unrecorded), are presented in Figure B4. The AxWJ Model 5662 powering test rotor force measurements, as tested, are presented in Figure A4 and Table A8.

Model-scale rotor RPM and force measurements of thrust and torque were recorded, after the model attained a steady state sinkage and trim, and rotor RPM was adjusted manually to attain the calculated model drag force (F_D) to emulate the ship propulsion point. F_D was calculated according to the traditional formula, using the ITTC ship and model friction coefficients, correlation allowance, wetted surface corresponding to the bare hull condition, and no form factor. Due to the aforementioned discrepancy in the pre-test calculations of hull wetted surface, the values of F_D to which the model was adjusted during this series of testing were biased high.

_

² The AxWJ bare hull resistance pre-test estimate was prepared by Fung (Code 2420), based on proprietary speed-independent regression equations, where residuary resistance coefficients were a function of the ship's hull form parameters, (i.e. displacement-length ratio, beam-draft ratio, prismatic coefficient, maximum section area coefficient, half-entrance angle, bow bulb transverse section area/vertical location, and transom configuration). The pre-test estimate was then modified by Cusanelli to reflect the resistance effect of the Gooseneck Bulb.

Values presented in Figure A4 and Table A8 represent the model-scale forces as measured at the incorrect F_D value. Subsequent analysis to adjust the model propulsion and rotor forces to reflect the correct values of F_D will also be presented within this document.

Model-Scale Rotor Forces: Over and Under-Propulsion

Model-scale powering data for the AxWJ Model 5662 was collected for over and under-propelled conditions, at equivalent ship speeds of 25 and 36 knots. The model rotor RPM was adjusted to nominal $\pm 5\%$ and $\pm 10\%$ of the values determined for the ship propulsion point as presented above. Rotor RPM increases above the value at ship propulsion point is defined as over-propelled (reduced F_D), and conversely, RPM below ship propulsion point is defined as under-propelled (increased F_D). The model rotor force measurements for AxWJ Model 5662, in the over- and under-propelled conditions, are presented in Figure A5 and Table A9.

Included in Table A9 is a comparison of the interpolated propulsion point (at the tested values of F_D) from over/under propulsion test to that determined from standard powering test technique. A time span of two weeks separated the standard powering test and the over/under propulsion test. The determined values of rotor RPM to attain 25 and 36 knots differed by less that 1% between the two test techniques. While the individual rotor forces appeared to vary somewhat, the total values of thrusts and torques for all four rotors, at 25 knots differed by 1.3% an 1.1% respectively, and at 36 knots differed by only 0.5% and 0.1% respectively. It can it be concluded that over/under propulsion test did not necessarily add any more accuracy to the measured forces at the ship propulsion point, as tested.

The collected data from the over/under propulsion test has proved to be invaluable, as it was used post-test to re-analyze the powering data at the corrected F_D values due to the wetted surface discrepancy. Tabulated values of rotor forces for varying F_D values were derived from the over/under propulsion test at ship speeds of 25 and 36 knots only. Estimates were made of rotor forces for varying F_D values at the additional 5 powering test speeds, 15, 20, 30, 39, and 42 knots, using the measured values for each speed at the tested F_D , and adjusting these values based on the individual slopes of the curve fits to the over/under powering data measured at 25 and 36 knots. The estimated over/under propulsion forces, at the additional 5 powering test speeds, are presented in Table A10.

Model-Scale Rotor Forces: Estimated At Corrected Ship Propulsion Point

The AxWJ Model 5662 powering test rotor force measurements, estimated at the corrected ship propulsion point (correct F_D values) by utilizing the over/under propulsion test data, for each of the seven powering test speeds, are presented in Figure A6 and Table A11. At all test speeds, the value of F_D was reduced by 6.5% due to the reduction in calculated ship wetted surface, necessitating an increase in rotor RPM and an associated increase in thrust and torque on all shafts, in order to attain the corrected ship propulsion point.

For comparison, included in Table A11 are the rotor force measurements estimated from the over/under propulsion test data, at the original propulsion point (incorrect F_D) as tested. On average across the seven test speeds, the reduction in F_D of 6.5% necessitated an increase in model rotor RPM of 1.3%, and increases in model rotor thrust and torque of 2.8% and 2.9%, respectively.

The rotor force measurements determined during model-scale powering tests are reflective of the model scale pump efficiencies. Direct extrapolation of these rotor forces will not be representative of the expected power requirements of the full-scale waterjets. Full-scale pump efficiencies have been determined to be significantly higher than those measured at model scale. Powering analysis for waterjets requires a significant scope of additional testing and analysis to define mass flow and pressures within the waterjet system. This subsequent testing on the

AxWJ, continued analysis, and full-scale predictions of waterjet powering on this hull, will be reported in subsequent documents.

Model Test Uncertainties - Resistance & Rotor Force Measurements

AxWJ Model 5662 measurement uncertainties were determined for the quantities of model speed, hull resistance, and for combined inboard and outboard shafts quantities of shaft thrust, torque, and rotational speed (RPM). Overall uncertainties were determined by combining bias and precision limits using the root-sum-square (RSS) method for a 95 percent confidence level. The values for torque and RPM were then used to determine the uncertainty in the calculation of delivered power. Model 5662 resistance and powering measurement uncertainties are presented in Table A12.

Resistance measurement uncertainties, at 25 and 36 knots, were determined to be $\pm 0.46\%$ and $\pm 0.35\%$ of the measured nominal mean values, respectively. Likewise, the model scale delivered power measurement uncertainties were $\pm 2.13\%$ and $\pm 1.59\%$, at 25 and 36 knots. The stated uncertainties for measured model delivered power reflect the combined measurement uncertainties of eight model quantities, shaft torque and RPM, for each of four shafts.

Dynamic Sinkage and Pitch

The dynamic sinkage and pitch of the model was recorded for each tested ship speed, during all of the resistance and powering tests. The dynamic sinkage and pitch of the AxWJ Model 5662, for all three displacements, recorded during the bare hull resistance tests (unpowered), are presented and compared in Figure A7 and Table A13. The dynamic sinkage and pitch recorded during the powering tests at DES displacement are presented, and compared to the values from the DES bare hull test, in Figure A8 and Table A14.

The waterjet propulsion does exhibit some measurable effects on the running trim of the model. Presumably due to the suction force of the operating waterjets on the AxWJ Model 5662, the measured dynamic sinkage and pitch was significantly different during the powering tests as compared to the bare hull resistance tests. Across the entire tested speed range, 15 to 42 knots, the recorded sinkage at the Aft Perpendicular (AP) was greater when the waterjets were operational. Consequently, the sinkage at the Forward Perpendicular (FP) was reduced.

ROM ESTIMATE OF AXWJ FULL-SCALE POWERING

Direct extrapolation of model-scale rotor force measurements will not be representative of the expected power requirements of the full-scale waterjets, due to significant differences in model vs. full-scale pump efficiencies. In addition, the present tests were conducted on a model configuration without the installation of a centerline skeg. It is the opinion of the HWG that the full-scale AxWJ would likely require a centerline skeg for structural support during construction and dry-docking, and for directional stability.

For a preliminary evaluation of AxWJ powering performance, a rough order of magnitude (ROM) estimate of full-scale powering expected from the full-scale AxWJ was prepared. This ROM powering estimate utilized estimated full-scale appended effective power, and the accepted range of waterjet propulsion coefficients (PC_{WJ}).

In order to estimate the AxWJ appended resistance with a centerline skeg, an estimate of the added effective power due to the installation of a centerline skeg on the AxWJ was prepared by H. Liu (Code 5200), based upon his previous appendage drag evaluation.³ The skeg design utilized was that previously included on the AxWJ hull. This skeg increases the hull wetted surface by 6667ft² (6.5% increase). The skeg added effective power was applied to the resistance prediction for the AxWJ with LDV Nozzles.

_

³ NSWCCD report of limited distribution

The propulsive coefficient for waterjet propulsion, relating the 'appended' hull resistance to required propulsion power, when at speeds in the upper portion of the JHSS hull platform range (30 to 42 knots), has an accepted value in the range of $0.65 \le PC_{WJ} \le 0.68$. For speeds below 30 knots, trends in the PC_{WJ} show that it can reduce significantly in value. A recent waterjet evaluation program, conducted by the US Navy on the X-Craft at a range of loadings, included both model-scale and full-scale powering experiments at low speeds. Ship/model powering correlations were determined by $Metcalf^4$ (Code 5200) from which can be determined a range of PC_{WJ} for ship speeds below 30 knots. Coincidentally, the range of values for PC_{WJ} determined from the X-Craft study, averaged over the speed range of 30 to 42 knots, is 0.64 to 0.68. The aforementioned values for PC_{WJ} were derived primarily from mixed-flow pumps, as used in most current commercially available waterjets, and therefore, may not reflect full-scale performances of axial pump waterjets.

Applying the range of accepted PC_{WJ} at speeds of 30 knots and above, and the range in PC_{WJ} from the X-Craft evaluation to speeds below 30 knots, to the appended AxWJ (with LDV nozzles and centerline skeg), at design displacement, yields the preliminary rough order of magnitude (ROM) powering estimate for the AxWJ, as presented in Table 3.

Table 3. AxWJ preliminary rough order of magnitude (ROM) powering estimate

	AxWJ Appended*	AxWJ Pr	elimir	-	n Order of Ma ng Estimate	gnit	ude (ROM)
Vs (kts)	PE (hp)	Ran	ge of	PC _w	Range	of P	D (hp)
15	7088	0.46	-	0.53	15566	-	13410
20	16383	0.54	-	0.57	30580	-	28740
25	32477	0.58	-	0.61	56134	-	53224
30	52839				81290	-	77704
36	93640	0.65		0.60	144062	-	137706
39	140776	0.65		0.68	216579	_	207024
42	208906				321394	_	307215

^{*}LDV Nozzles PE prediction plus Centerline Skeg Added PE Estimate

The Table 3 preliminary rough order of magnitude (ROM) powering estimate is for preliminary evaluation purposes only. Full-scale predictions of waterjet powering on the AxWJ hull will be reported, in a subsequent document, after the completion of additional testing and analysis to define mass flow and pressures within the waterjet system.

COMPARISONS BETWEEN AxWJ AND JHSS BASELINE BSS

A comparison of the AxWJ bare hull PE, at the three displacements, to that of the bare hull JHSS baseline shafts & struts (BSS) parent hullform, is presented in Figure A9 and included in Table A6. The AxWJ at DES, HVY, and LITE displacements, respectively, exhibited a speed-averaged bare hull resistance of 16.4%, 16.6%, and 10.2% higher than that of the bare hull BSS at equivalent displacement. Increase in bare hull resistance for the AxWJ over that of the BSS is likely a result of the greater volume and depth of transom in the AxWJ design. The AxWJ transom depth was dictated primarily by the criteria, that, in order to assure rotor priming, half of the waterjet inlet diameter should remain submerged at design displacement.

The appended PE of the AxWJ, with LDV nozzles installed, was compared to that of the JHSS baseline shafts & struts (BSS) hull, fully appended (shafts & struts, rudders, and stern flap), at DES displacement, and is presented in Figure A10 and included in Table A7. Averaged across the seven tested speeds, in the range of 15 to 42 knots, the AxWJ with the LDV nozzles

⁴ Upcoming NSWCCD report

installed exhibited a PE of 8.2% lower than that of the fully appended BSS hull. This comparison indicates that even though the AxWJ bare hull exhibits increased resistance due to its increased transom volume, when compared to that of the baseline BSS bare hull, the requirement of additional appendages on the BSS hull for propulsion (i.e. shafts & struts, rudders) increases that hull's appended resistance to a value greater than the AxWJ hull (which requires only the waterjet nozzles and no corresponding shaftline appendages or rudders). Two additional facts should be noted, however: (1) The LDV nozzles design did not include steering or reversing buckets, which would be a necessary component of any full-scale waterjet installation. It is unknown whether such components, which could be designed so as to retract, would have any influence on resistance. (2) The LDV nozzles design did impinge on the transom flow resulting in additional hull drag greater than that expected for standard propulsion-only designed nozzles.

A direct comparison between a full-scale powering prediction for the AxWJ and that of the JHSS baseline BSS cannot be presented as of this writing. Unlike the open propeller shaft and strut BSS Model 5653 data, the model-scale data from the waterjet propelled AxWJ cannot be directly extrapolated to full-scale powering values. The rotor force measurements determined during model-scale waterjet powering tests are reflective of the model scale pump efficiencies. Direct extrapolation of these rotor forces will not be representative of the expected power requirements of the full-scale waterjets, which have been shown to have significantly higher pump efficiencies. For documentation purposes only, a model-scale powering comparison between AxWJ Model 5662 and BSS Model 5653 is presented in Table A15. This comparison is strictly drawn on model-scale measured forces only, and does not reflect the expected full-scale powering results.

A comparison of the AxWJ preliminary rough order of magnitude (ROM) powering estimate, to the powering prediction for the JHSS BSS, Cusanelli and Cheskakas [Ref 5], is presented in Table 4. At high speeds of 30 knots and above, the waterjet propulsion system of the AxWJ appears to have an advantage in ship powering over that of the open propeller BSS hull. At the 39 knot speed of interest, the AxWJ has an estimated power approximately 2.5% lower than that of the BSS. For speeds below 30 knots, the AxWJ has an estimated required power significantly higher than that of the BSS.

Table 4. Comparison between AxWJ preliminary rough order of magnitude (ROM) powering estimate and JHSS baseline BSS powering prediction

	BSS Powering Prediction	AxWJ Rough Magnitude (RO Estim	M) Powering
Vs (kts)	PD (hp)	Avg PD (hp)	Δ PD (%)
15	12031	14488	+20.4%
20	26253	29660	+13.0%
25	50426	54679	+8.4%
30	83951	79497	-5.3%
36	149593	140884	-5.8%
39	217339	211801	-2.5%
42	317161	314304	-0.9%

Again, the AxWJ preliminary rough order of magnitude (ROM) powering estimate presented in Table 4 is for preliminary evaluation purposes only.

CONTINUATION OF WORK

A significant scope of this initial test series on AxWJ Model 5662 was dedicated to the waterjet flow surveys conducted with the Laser Doppler Velocimetry (LDV) system, under the direction of D. Fry (Code 5400), and to the measurement of pressures within the waterjet system, under the direction of M. Donnelly (Code 5400). Detailed explanations of both the LDV and the pressure measurement systems, recorded data, subsequent analysis, and ultimately full-scale predictions of waterjet powering on this hull, will be reported in subsequent documentation.

CONCLUSIONS

This report is the documentation of the first series of model-scale calm water resistance and powering tests, conducted 12/06-2/07, on the AxWJ Model 5662 with LDV nozzle design, a waterjet propelled variant of the JHSS hull platform. It is intended to be a record of the model test resistance and powering data and analysis, with full-scale predictions presented for resistance only.

Bare hull effective powers were determined for the AxWJ at the three JHSS hullform displacement conditions, design (DES) and \pm 10% displacements. The AxWJ exhibited a nearly linear relationship between displacement variations and changes in resistance.

The AxWJ bare hull effective power was also compared to that of the JHSS Baseline shaft & strut (BSS). Increase in bare hull resistance for the AxWJ over that of the BSS is likely a result of the greater volume and depth of transom in the AxWJ design. The AxWJ transom depth was dictated primarily by the criteria, that, in order to assure rotor priming, half of the waterjet inlet diameter should remain submerged at design displacement. A relaxation in this waterjet transom depth criteria would likely reduce the resistance of the AxWJ hull.

Appended effective power was determined for the AxWJ hull with the LDV design waterjet nozzles installed. During testing, the transom flow was observed to impinge on the LDV nozzles hardware, resulting in an increase in resistance larger than that anticipated for standard propulsion-only designed nozzles.

The AxWJ with the LDV nozzles installed exhibited effective lower than that of the fully appended BSS hull. This comparison indicates that even though the AxWJ bare hull exhibits increased resistance due to its increased transom volume, when compared to that of the BSS bare hull, the requirement of additional appendages on the BSS hull for propulsion (i.e. shafts, struts, rudders) increases that hull's appended resistance to a value greater than the AxWJ hull with nozzles installed (which requires no corresponding appendages).

Model-scale rotor force measurements were recorded for the AxWJ when under power. Due to significant differences in model-scale versus full-scale pump efficiencies, direct extrapolation of rotor forces measured at model-scale will not be representative of the expected power requirements of the full-scale waterjets. Powering analysis for waterjets requires a significant scope of additional testing to define mass flow and pressures within the waterjet system. This subsequent testing on the AxWJ, continued analysis, and full-scale predictions of waterjet powering, will be reported in subsequent documents.

For a preliminary evaluation of AxWJ powering performance, a rough order of magnitude (ROM) estimate of full-scale powering expected from the AxWJ was prepared. This ROM powering estimate utilized estimated full-scale appended effective power, and the accepted range of waterjet propulsion coefficients (PC_{WJ}). The AxWJ preliminary rough order of magnitude (ROM) powering estimate is for preliminary evaluation purposes only.

A comparison of the AxWJ preliminary rough order of magnitude (ROM) powering estimate, to the powering prediction for the JHSS BSS, shows that at high speeds of 30 knots and above, the waterjet propulsion system of the AxWJ appears to have an advantage in ship powering over

that of the open propeller BSS hull. For speeds below 30 knots, the AxWJ has an estimated required power significantly higher than that of the BSS.

Presumably due to the suction force of the operating waterjets on the AxWJ Model 5662, the measured dynamic sinkage and pitch was significantly different during the powering tests as compared to the bare hull resistance tests. The sinkage at the Aft Perpendicular (AP) was greater when the waterjets were operational, and consequently, the sinkage at the Forward Perpendicular (FP) was reduced. On a ship with open propellers, such as the JHSS BSS, the dynamic sinkage and pitch exhibits little change between resistance and propulsion tests.

ACKNOWLEDGEMENTS

Technical Point of Contact for the AxWJ design is Stuart Jessup (Code 503). Points of contact for AxWJ Model 5662 testing are: Dominic S Cusanelli (Code 5200) for the resistance and powering, David Fry (Code 5400) for the LDV surveys, and Martin Donnelly (Code 5400) for the pressure measurements.

Current members of the JHSS Hydro Working Group include the following individuals from NSWCCD: Jack Offutt (Code 2120), Robert Anderson (Code 2410), Siu Fung, Colen Kennell, and George Lamb (Code 2420), Stuart Jessup (Code 503), Gabor Karafiath and Dominic Cusanelli (Code 5200), Michael Wilson, Thad Michael, and John Scherer (5400), and Edward Devine (Code 6540). Additional HWG members are: Christopher Dicks (FORNATL-UK), and Jeff Bohn, Steve Morris, and John Slager (CSC).

The authors would also like to acknowledge the following NSWCCD personnel for their contributions towards this model test series: W. Burroughs (Code 5104), B. Diehl and C. Crump (Code 5105), D. Lyons (Code 5200), J. Burton (Code 5400), and D. Mullinix (CSC).

REFERENCES

- "Rapid Strategic Lift Ship Feasibility Study Report", Ser 05D/097, NAVSEA 05D, (29 Sept. 2004).
- 2. Wynn, Steven, "Joint High Speed Sealift (JHSS)", NAVSEA Presentation, (March 8, 2006).
- 3. Cusanelli, D.S., "Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (Model 5653) Series 1: Bare Hull Resistance, Appended Resistance, and Alternative Bow Evaluations" 50-TR-2007/066 (Aug 2007).
- 4. Cusanelli and Bradel, "Floating Platform Tow Post" United States Patent No. 5,343,742 (Sept. 6, 1994).
- Cusanelli, D.S. and C.D. Chesnakas, "Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (BSS) Model 5653: Series 2, Propeller Disk LDV Wake Survey; and Series 3, Stock Propeller Powering and Stern Flap Evaluation Experiments", NSWCCD-TR-2007/084 (Sept 2007).

This page intentionally left blank.

APPENDIX A AxWJ MODEL 5662 RESISTANCE & POWERING DATA

This page intentionally left blank.

	FIGURES OF APPENDIX A	Page
A1.	AxWJ BH, PE predictions, three displacements	A5
A2.	AxWJ BH, PE comparison vs. pre-test estimate, DES displacement	A7
A3.	AxWJ, PE comparison with LDV nozzles installed (appended) vs. bare hull	A8
A4.	AxWJ powering, model-scale rotor force measurements as tested	A9
A5.	AxWJ, over- and under-propelled model-scale powering data, 25 and 36 knots, as	
	tested	
A6.	AxWJ powering, model-scale rotor forces at corrected ship propulsion point	
A7.	AxWJ BH (unpowered), dynamic sinkage and pitch, three displacements	
A8.	AxWJ, dynamic sinkage and pitch, powered vs. unpowered	A13
A9.	Bare hull PE comparisons between AxWJ and JHSS baseline BSS, three	
	displacements	A14
A10.	Appended PE comparison between AxWJ (LDV nozzles) and JHSS baseline BSS (shafts & struts, rudders, flap), DES displacement	A16
	TABLES OF APPENDIX A	Daga
A 1		Page
	Test Agenda, AxWJ Model 5662 Series 1, Dec 2006 – Feb 2007	
	AxWI Fire 2 PIL HVV PF and intime	
A3.	AxWJ, Exp2, BH, HVY PE prediction	
	AxWJ, Exp3, BH, DES PE prediction	
A5.	AxWJ, Exp4, BH, LITE PE prediction	
	AxWJ, Series 1 Bare Hull PE tests, summary and comparisons	
	AxWJ, Exp17, LDV nozzles installed, DES PE prediction	A27
A7b.	AxWJ appended (LDV nozzles), comparison to AxWJ bare hull and JHSS baseline BSS fully appended	A27
A8.	AxWJ powering, model-scale rotor force measurements, as tested	A28
	AxWJ, faired model-scale rotor forces data, over- and under-propelled, 25 and 36	
	knots, as tested	A29
A10.	AxWJ, estimated model-scale rotor forces, over- and under-propelled, for speeds not tested	A31
A11.	AxWJ model-scale rotor forces estimated at corrected ship propulsion point	
	AxWJ Model 5662 resistance and powering measurement uncertainties	
	AxWJ BH (unpowered), dynamic sinkage and pitch, three ship displacements	
	AxWJ, dynamic sinkage and pitch, powered vs. unpowered	
	Model-scale powering comparison: AxWJ vs. BSS	

This page intentionally left blank.

Fig A1. AxWJ BH, PE predictions, at three ship displacements (continued)

Fig A2. AxWJ BH, PE comparison vs. pre-test estimate

Fig A3. AxWJ, PE comparison with LDV nozzles installed (appended) vs. bare hull

Fig A4. AxWJ powering, model-scale rotor force measurements as tested

Fig A4. AxWJ powering, model-scale rotor force measurements as tested (continued)

Fig A5. AxWJ, over- and under-propelled powering model-scale data, 25 and 36 knots, as tested

Rotor RPM model-scale

Fig A6. AxWJ powering, model-scale rotor forces at corrected ship propulsion point

Fig A9. Bare hull PE comparisons between AxWJ and JHSS baseline BSS, three displacements

Fig A9. Bare hull PE comparisons between AxWJ and JHSS baseline BSS, three displacements - continued

Fig A10. Appended PE comparison between AxWJ (LDV nozzles) and JHSS baseline BSS (shafts & struts, rudders, flap), DES displacement

Table A1. Test Agenda, AxWJ Model 5662 Series 1, Dec 2006 to Feb 2007

Day	Date	Test#	Objective
Mon	12/18		Model rigging continued.
Tue	12/19		Model moved to Carriage 2. Rigging completed. Model ballasted to 3 displacements.
			Model & Instrumentation installed on Carriage 2
		1	PE set-up, Check-out, Alignment
Wed	12/20		Admiral Sullivan Tour
019690000	735.1m250:00-2880	2	EHP [AxWJ GB HVY BH]
			EHP [AxWJ GB DES BH]
Thu	12/21	4	EHP [AxWJ GB LITE BH]
			Shaftlines disassembled at dynos. Drive motors & controls tested.
			LDV Rig
Fri	12/22		Jet Assemblies Installed with dummy hubs. Properly arrange dynamometers. Drive
			shafts re-manufactured.
Mon	12/25		HOL
Tue	12/26		HOL
mary and	GICH EDW		Pressure gage system assembly and installation.
Wed	12/27		Rebuild, Reassemble, & Troubleshoot drive system.
		5	No Loads Conducted* Alternative methods.
Thu	12/28		SI Aft Bearing manufactured and replaced. Cracks in ducts repaired. Jet Assemblies Installed with Rotors. Drive system reassembled. Pressure gage installation continued.
Fri	12/29		LDV Rig
Mon	1/1		HOL
Tue	1/2		
Wed	1/3		LDV and Pressure Systems Installation and Troubleshooting. Jet Assemblies with Rotor
Thu	1/4		Removed/Reinstalled/Modified twice.
Fri	1/5		
Mon	1/8		Model Installed under carriage. Cable and pressure tube installation and check-out.
Tue	1/9		Model removed from Carriage. LDV troubleshooting begun.
Wed	1/10		
Thu	1/11		
Fri	1/12		LDV troubleshooting, Mirror replacement.
Sat	1/13		
Mon	1/15		HOL. LDV mirror installation / troubleshooting.
Tue	1/16	6	Detailed flowrate measured on each jet*
		7	Blocking Board installed. Bollards conducted on All 4 shafts simultaneously.
Wed	1/17	8	DES Powering, 7 speeds. Shaft Forces, Pressures, Station 6 LDV.
			Continuation of DES Powering, Station 6 LDV
Thu	1/18	10	Blocking Board reinstalled. Bollards conducted on Individual Shafts.
			Aft (still) camera installed. Dedicated photo runs.
Fri	1/19		Model to drydock. Rig Station 3 (stbd) LDV.
Mon	1/22		Rig Station 3 (stbd) LDV. Reinstall Model.
-		11	Station 3 (stbd) LDV, 7 speeds, powered.
Tue	1/23		Model to drydock. Rig Station 3 (port) LDV.
			Reinstall Model.
Wed	1/24	12	Station 3 (port) LDV, 7 speeds, powered.
			Model to drydock.
Thur	1/25		Rig Station 1 (stbd) LDV. Reconfigure pressure gages to CL taps.

Table A1. Test Agenda, AxWJ Model 5662 Series 1, Dec 2006 to Feb 2007 - continued

Day	Date	Test #	Objective
			Reinstall model. Pressure gages connected.
Fri	1/26		Bollards (partial test, no blocking board) to verify pressure transducer installation.
		13	Station 1 (stbd) LDV, 7 speeds, powered. Measure CL pressures.
Mon	1/29		Model to drydock. Install covers on inlets. Reinstall model.
_		14	Station 1 (stbd) LDV, 7 speeds, inlets covered.
Tue	1/30		Model to drydock. Rig Station 1 (port) LDV. Inlets covers removed. Reinstall Model.
		15	Station 1 (port) LDV, 7 speeds, powered.
			Hi-Def Video camera installed. Dedicated video runs.
ا د ۱۸۷	1/01	15	Station 1 (port) LDV, powered (continued).
Wed	1/31	16	Over/Under Propulsion. DES, 25 & 36 kts.
			Model to drydock. Install covers on inlets.
			Reinstall Model.
Thur	2/1	17	Station 1 (port) LDV, 7 speeds, inlets covered.
			De-Rig
Fri	2/2		50 118

Test *Rotor RPMs (nominal)

5 No Loads: 1000, 1500, 2000, 2500, 2800, 3000

6 Flow Rate: 1000, 1750, 2500

7, 10 Bollards: 1000, 1500, 1750, 2000, 2500, 2800

Table A2. AxWJ hydrostatic calculations and ship/model test parameters

PRINCIPAL DIMENSIONS	LENGTH (LBP) = 950.51 ft (289.71 m) LENGTH (LWL) = 979.39 ft (298.52 m) BEAM (B _X) = 104.81 ft (31.95 m) DRAFT (T _X) = 28.27 ft (8.62 m) TRIIM (+Bow) = 0.00 ft (0.00 m) DISPLACEMENT = 36491.0 T (37075.1) WETTED SURFACE = 96696 sqft (8983.sqm)	MODEL SCALE DATA	SCALE RATIO = 34.121	LENGTH (LBP) = 27.86 ft (8.49 m)	LENGTH (LWL) = 28.70 ft (8.75 m)	BEAM (B_X^i) = 3.07 ft (0.94 m)	DRAFT (T_X) = 0.83 ft (0.25 m)	DISPLACEMENT = 2001.1 lbs (0.91 t)	WETTED SURFACE = 83.06 saft (7.72 sam)
		FFICIENTS	L _E /LWL = 0.530 L ₂ /LWL = 0.000	H	H	100Cv = 0.563	.WL)3 =		I _B = 6.87
		NONDIMENSIONAL COEFFICIENTS	C _{VP} = 0.637			$LWUB_X = 9.344$ $B_XT_X = 3.707$		n	$T_T/T_X = 0.247$ $A_B/A_X = 0.115$
				-	α.	r. r.	0.800	06	0.902

Table A2. AxWJ hydrostatic calculations and ship/model test parameters

Axial Waterjet (AxWJ) Hull	Design (DE	S)	Heavy (HV	Y)	Light (LITE)
Gooseneck Bulb (GB)			+10%		-10%	
	36491 tons		40140 tons		32841 tons	
Model 5662	SHIP	MODEL	SHIP	MODEL		1
MODEL SCALE RATIO	-	34.121	7-	34.121	-1	34.121
LOA (ft)	977.5	28.648	977.5	28.648	977.5	28.648
LBP (ft)	950.5	27.857	950.5	27.857	950.5	27.857
LWL (ft)	979.4	28.703	948.5	27.798	981.6	28.769
WET SURF HULL(sq ft)	96696	83.055	100380	86.219	92896	79.791
WET SURF APP(sq ft)	0	0.000	0	0.000	0	0.000
TOTAL WET SURF(sq ft)	96696	83.055	100380	86.219	92896	79.791
DISPLACEMENT (ton, lbs)	36491	2000	40140	2200	32841	1800
BOW DRAFT @FP (ft)	28.27	0.829	30.07	0.881	26.47	0.776
STERN DRAFT @AP (ft)	28.27	0.829	30.07	0.881	26.47	0.776
SHIP TRIM (+ft bow up)	0.00	0.000	0.00	0.000	0.00	0.000
TRIM ANGLE (degrees)	0.00		0.00	1	0.00	
BEAM (ft)	104.8	3.072	105.0	3.076	104.5	3.062
TEMP (F)	59	70	59	70	59	70
RHO	1.9905	1.9362	1.9905	1.9362	1.9905	1.9362
NU	1.2817	1.0552	1.2817	1.0552	1.2817	1.0552
Bow Deck/Keel (ft)	71.6	2.098	71.6	2.098	71.6	2.098
Pos of Hook fwd of FP (ft)	37.0	1.083	0.0	0.000	0.0	0.000
Stern Deck/Keel (ft)	71.6	2.098	71.6	2.098	71.6	2.098
Pos of Hook aft of AP (ft)	17.1	0.500	0.0	0.000	0.0	0.000
BOW HOOK SETTING (ft)		1.269		1.216		1.322
Hook if at FP (ft)	2	1.269	-	1.216	127	1.322
Hook if at AP (ft)	-	1.269	(2)	1.216	-	1.322
STERN HOOK SETTING (ft)		1.269		1.216		1.322
ROTOR DIA (ft, in)	9.91	3.485	9.91	3.485	9.91	3.485
NUMBER of BLADES	7	7	7	7	7	7
ROTOR ROTATION	INBD	INBD	INBD	INBD	INBD	INBD
SPEED RANGE, min (kts)	15.0	2.57	15.0	2.57	15.0	2.57
Design Speed (kts)	36.0	6.16	36.0	6.16	36.0	6.16
max (kts)	45.0	7.70	45.0	7.70	45.0	7.70
MODEL DISP desired (lbs)	200000000000000000000000000000000000000	2000		2200		1800
DISP actual (ton, lbs)	36490	2000	40138	2200	32841	1800
MODEL WEIGHT* (lbs)	+	1176	(m.	1176	~	1176
Floating Platform (lbs)		45	1/6	45	-	45
BALLAST required (lbs)	-	779	-	979	(2)	579
delta DISP (ton, lbs)			+ 3649	+200	-3649	-200
				+10.0%		-10.0%
APPENDAGES, ws (sqft)	0.0	0.000	0.0	0.000	0.0	0.000
none	0.0	0.000	0.0	0.000	0.0	0.000

^{*}Model weight for BH PE Tests was 1176lbs

Model weight for LDV & PD tests was 1310lbs and ballast was adjusted accordingly.

Table A3. AxWJ, Exp2, BH, HVY PE prediction

43.0

44.0

45.0

240363.6

267355.9

296892.6

179239.1

199367.3

221392.8

87153.2

93135.4

99380.2

64990.1

69451.1

74107.8

0.415

0.425

0.435

	SHIP		MODEL				
LAMBDA			34.121				
LWL	948.5	ft	27.798	ft			
S (no Skeg)	100380	ft 2	86.219	ft ²			
WT "	40140	LT	2200.7	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft 2/sec			
Ca	1.2017 2 00	17 7300	0.0000	11 7300			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW	11.5.1		P 34 (34)
14.0	5427.7	4047.4	3426.3	2555.0	0.135	0.455	0.835
15.0	6631.1	4944.8	4179.5	3116.7	0.145	0.487	0.832
16.0	8021.2	5981.4	5033.5	3753.5	0.155	0.520	0.835
17.0	9615.7	7170.4	5994.2	4469.9	0.164	0.552	0.844
18.0	11445.1	8534.6	7067.5	5270.2	0.174	0.584	0.859
19.0	13549.1	10103.5	8259.2	6158.9	0.184	0.617	0.883
20.0	15968.8	11908.0	9575.2	7140.3	0.193	0.649	0.915
21.0	18738.0	13972.9	11021.3	8218.6	0.203	0.682	0.954
22.0	21872.8	16310.6	12603.2	9398.2	0.213	0.714	0.997
23.0	25364.2	18914.1	14326.7	10683.4	0.222	0.747	1.039
24.0	29174.2	21755.2	16197.4	12078.4	0.232	0.779	1.075
25.0	33237.1	24784.9	18221.1	13587.5	0.242	0.812	1.100
26.0	37467.9	27939.8	20403.4	15214.8	0.251	0.844	1.112
27.0	41777.3	31153.3	22750.0	16964.7	0.261	0.877	1.107
28.0	46092.8	34371.4	25266.4	18841.1	0.271	0.909	1.086
29.0	50383.4	37570.9	27958.3	20848.5	0.280	0.942	1.053
30.0	54686.2	40779.5	30831.2	22990.8	0.290	0.974	1.012
31.0	59129.5	44092.8	33890.6	25272.2	0.300	1.007	0.970
32.0	63948.4	47686.3	37142.2	27696.9	0.309	1.039	0.937
33.0	69488.4	51817.5	40591.4	30269.0	0.319	1.072	0.921
34.0	76191.2	56815.8	44243.7	32992.5	0.328	1.104	0.931
35.0	84560.7	63056.9	48104.5	35871.6	0.338	1.136	0.974
36.0	95106.8	70921.2	52179.5	38910.2	0.348	1.169	1.054
37.0	108271.1	80737.7	56473.9	42112.6	0.357	1.201	1.171
38.0	124339.3	92719.8	60993.3	45482.7	0.367	1.234	1.322
39.0	143357.7	106901.8	65743.0	49024.6	0.377	1.266	1.498
40.0	165075.2	123096.5	70728.5	52742.2	0.386	1.299	1.688
41.0	188946.5	140897.4	75955.1	56639.7	0.396	1.331	1.877
42.0	214246.8	159763.8	81428.2	60721.0	0.406	1.364	2.053
42.0	240202 0	470000 4	074520	04000 4	0 445	4 200	0.000

2.206

2.342

2.482

1.396

1.429

1.461

Table A4. AxWJ, Exp3, BH, DES PE prediction

	SHIP	S (PE from RT inp	MODEL	3,			
LAMBDA	SHIP		34.121				
LWL	979.4	ft	28.703	ft			
S (no Skeg)	96696	ft ²	83.055	ft ²			
WT	36491	LT	2000.6	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft 2/sec			
Ca	1.20172-03	11 7360	0.0000	17360			
			FRICTIO	IIII BOUER	EN	111	400000
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CF
Vs knots	HP	PE KW	FRICTIO HP	NAL POWER KW	FN	V-L	1000CF
					0.133	0.447	0.933
knots	HP	KW	HP	KW		2072	
knots 14.0	HP 5441.5	KW 4057.7	HP 3287.9	KW 2451.8	0.133	0.447	0.933
14.0 15.0	HP 5441.5 6558.3	4057.7 4890.6	HP 3287.9 4010.8	KW 2451.8 2990.8	0.133 0.143	0.447 0.479	0.933 0.897
14.0 15.0 16.0	HP 5441.5 6558.3 7835.8	4057.7 4890.6 5843.2	HP 3287.9 4010.8 4830.4	KW 2451.8 2990.8 3602.0	0.133 0.143 0.152	0.447 0.479 0.511	0.933 0.897 0.872
14.0 15.0 16.0 17.0	HP 5441.5 6558.3 7835.8 9299.9	4057.7 4890.6 5843.2 6935.0	HP 3287.9 4010.8 4830.4 5752.4	KW 2451.8 2990.8 3602.0 4289.5	0.133 0.143 0.152 0.162	0.447 0.479 0.511 0.543	0.933 0.897 0.872 0.858

Table A5. AxWJ, Exp4, BH, LITE PE prediction

LAMBDA LWL	SHIP 981.6	ft	MODEL 34.121 28.769	ft			
S (no Skeg)	92896	ft ²	79.791	ft ²			
WT	32841	LT	1800.5	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft 2/sec			
Ca	1.20112 00	11 7500	0.0000	11 7300			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW	10.00		
14.0	5234.1	3903.1	3157.8	2354.8	0.133	0.447	0.936
15.0	6153.3	4588.5	3852.1	2872.5	0.142	0.479	0.844
16.0	7225.7	5388.2	4639.3	3459.5	0.152	0.511	0.781
17.0	8524.9	6357.0	5524.8	4119.8	0.161	0.543	0.756
18.0	10066.1	7506.3	6514.1	4857.6	0.171	0.575	0.754
19.0	11987.8	8939.3	7612.6	5676.7	0.180	0.606	0.789
20.0	14118.6	10528.2	8825.7	6581.3	0.190	0.638	0.819
21.0	16217.4	12093.3	10158.7	7575.3	0.199	0.670	0.809
22.0	18357.6	13689.3	11616.9	8662.7	0.209	0.702	0.783
23.0	20587.9	15352.4	13205.6	9847.4	0.218	0.734	0.751
24.0	22955.0	17117.5	14930.1	11133.4	0.228	0.766	0.718
25.0	25511.0	19023.5	16795.7	12524.5	0.237	0.798	0.690
26.0	28303.9	21106.3	18807.4	14024.7	0.247	0.830	0.669
27.0	31347.9	23376.2	20970.6	15637.8	0.256	0.862	0.652
28.0	34634.7	25827.1	23290.4	17367.7	0.266	0.894	0.639
29.0	38164.1	28459.0	25772.0	19218.1	0.275	0.926	0.629
30.0	41929.4	31266.8	28420.4	21193.1	0.285	0.958	0.619
31.0	45967.5	34278.0	31240.9	23296.3	0.294	0.989	0.612
32.0	50411.4	37591.8	34238.5	25531.6	0.304	1.021	0.611
33.0	55408.9	41318.4	37418.2	27902.8	0.313	1.053	0.619
34.0	61250.9	45674.8	40785.3	30413.6	0.323	1.085	0.644
35.0	68237.9	50885.0	44344.7	33067.8	0.332	1.117	0.690
36.0	76820.1	57284.7	48101.4	35869.2	0.342	1.149	0.762
37.0	87333.2	65124.4	52060.5	38821.5	0.351	1.181	0.862
38.0	100109.9	74651.9	56227.1	41928.5	0.361	1.213	0.989
39.0	115257.8	85947.7	60606.0	45193.9	0.370	1.245	1.140
40.0	132615.3	98891.2	65202.2	48621.3	0.380	1.277	1.303
41.0	151836.1	113224.2	70020.8	52214.5	0.389	1.309	1.469
42.0	172220.6	128424.9	75066.7	55977.3	0.399	1.341	1.622
43.0	193106.3	143999.4	80344.9	59913.2	0.408	1.372	1.755
44.0	214306.4	159808.3	85860.2	64026.0	0.418	1.404	1.866
45.0	236794.3	176577.5	91617.6	68319.3	0.427	1.436	1.971

Table A6. AxWJ, Series 1 PE tests, summary and comparisons

Axial	Waterjet GB	BH (Model 5	662)	Dis	placement Ef	
	Exp3	Exp2			Exp2/Exp3	Exp4/Exp3
	AxWj	AxWj	AxWj		AxWj	AxWj
	GB	GB	GB		GB	GB
	вн	BH	BH		BH	BH
	DES	HVY	LITE		HVY/DES	LITE/DES
Vs (kts)	PE (hp)	PE (hp)	PE (hp)	Vs (kts)	PE Ratio	PE Ratio
14	5441	5428	5234	14	0.997	0.962
15	6558	6631	6153	15	1.011	0.938
16	7836	8021	7226	16	1.024	0.922
17	9300	9616	8525	17	1.034	0.917
18	10978	11445	10066	18	1.043	0.917
19	12893	13549	11988	19	1.051	0.930
20	15064	15969	14119	20	1.060	0.937
21	17497	18738	16217	21	1.071	0.927
22	20183	21873	18358	22	1.084	0.910
23	23102	25364	20588	23	1.098	0.891
24	26219	29174	22955	24	1.113	0.876
25	29492	33237	25511	25	1.127	0.865
26	32877	37468	28304	26	1.140	0.861
27	36343	41777	31348	27	1.150	0.863
28	39878	46093	34635	28	1.156	0.869
29	43508	50383	38164	29	1.158	0.877
30	47306	54686	41929	30	1.156	0.886
31	51403	59129	45968	31	1.150	0.894
32	55997	63948	50411	32	1.142	0.900
33	61348	69488	55409	33	1.133	0.903
34	67770	76191	61251	34	1.124	0.904
35	75615	84561	68238	35	1.118	0.902
36	85242	95107	76820	36	1.116	0.901
37	96979	108271	87333	37	1.116	0.901
38	111078	124339	100110	38	1.119	0.901
39	127665	143358	115258	39	1.123	0.903
40	146705	165075	132615	40	1.125	0.904
41	167972	188946	151836	41	1.125	0.904
42	191065	214247	172221	42	1.121	0.901
43	215477	240364	193106	43	1.115	0.896
44	240758	267356	214306	44	1.110	0.890
45	266793	296893	236794	45	1.113	0.888

Avg: 1.104 0.901

Table A6. AxWJ, Series 1 PE tests, summary and comparisons (continued)

	Axial Wate	erjet Pre-Test	Estimate		AxWJ	GB BH (Mode	1 5662)
	Pre-Test		Pre-Test	Pre-Test		Exp3	AxWJ /
	AxWJ		AxWJ	AxWJ/BSS		AxWj	Pre-Test
	BB	GB/BB*	GB	GB		GB	GB
	вн	BH	вн	вн		BH	вн
- 11	DES	DES	DES	DES		DES	DES
Vs (kts)	PE (hP)	PE Ratio	PE (hP)	PE Ratio	Vs (kts)	PE (hP)	PE Ratio
14	5474	1.040	5691	1.207	14	5441	0.956
		0.999		C-425 42%	15	6558	
16	8112	0.972	7888	1.191	16	7836	0.993
		0.957			17	9300	
18	11549	0.949	10961	1.207	18	10978	1.001
		0.947		-51,000	19	12893	
20	15875	0.948	15050	1.244	20	15064	1.001
		0.951			21	17497	
22	21065	0.955	20117	1.265	22	20183	1.003
		0.959			23	23102	
24	27022	0.962	25996	1.255	24	26219	1.009
		0.965		545325555	25	29492	
26	34051	0.967	32913	1.242	26	32877	0.999
		0.968			27	36343	
28	42152	0.970	40867	1.235	28	39878	0.976
		0.971			29	43508	
30	50662	0.973	49279	1.224	30	47306	0.960
		0.975		LPS#WSF#SFC	31	51403	
32	58522	0.977	57171	1.179	32	55997	0.979
		0.979			33	61348	
34	67561	0.981	66299	1.115	34	67770	1.022
35	74290	0.983	73028	1.092	35	75615	1.035
36	82966	0.984	81649	1.074	36	85242	1.044
37	93471	0.985	92035	1.053	37	96979	1.054
38	105867	0.985	104250	1.029	38	111078	1.065
39	120770	0.985	118913	1.010	39	127665	1.074
40	139092	0.985	136943	1.002	40	146705	1.071
		0.985		(-TLX/F2T/CT/	41	167972	
		0.985			42	191065	
		0.984			43	215477	
		0.982			44	240758	
		0.976			45	266793	

^{*}GB/BB PE ratio determined during JHSS BSS Series 1 tests

Avg:

1.014

Table A6. AxWJ, Series 1 PE tests, summary and comparisons (continued)

Exp13 Exp15 Exp2 BSS Exp3 BSS Exp3 BSS Exp3 BSS Exp3 BSS BSS BSS BSS BSS BSS GBS BBH		100 CDC 2	Baseline S&S GB Bare Hull (Model 565	1 5653-3)	Axial Wa	Axial Waterjet GB Bar	Bare Hull (Model	el 5662)	Axial W.	aterjet Bare	Axial Waterjet Bare Hull (Model 5662) vs.	3662) vs.
BSS BSS AWM AWM AWM AWM/JESS GB GB GB GB GB BH BH BH BH BH BH BH BH BH BH BH BH BH BH BH BH BH BH BH BH A115 FE (ThD) PE (ThD)		Exp14	Exp13	Exp15		Exp3	Exp2		Baselir	ne S&S Bare	Hull (Model	5653-3)
CB GB CB HV LITE DES HVV LITE PL LVV LVV LVV <		BSS	BSS	BSS		AxWj	AxWj	AxWj		AxWJ/BSS	AxWJ/BSS	AxWJ/BSS
BH BH<		GB	GB	GB		GB	GB	GB		GB	GB	GB
DES HVY LITE DES TITE		BH	BH	H		H	BH	H H		ВН	ВН	BH
(F(hp) PE (hp) PE Ratio PI 4715 4928 4577 14 5441 5428 6534 14 1154 <th></th> <th>DES</th> <th>HVY</th> <th>LITE</th> <th></th> <th>DES</th> <th>HVY</th> <th>LITE</th> <th></th> <th>DES</th> <th>HVY</th> <th>LITE</th>		DES	HVY	LITE		DES	HVY	LITE		DES	HVY	LITE
4715 4928 4577 14 5441 5428 5234 1154 6524 6082 6625 6623 66153 6153 6153 1154 6624 7356 6626 6528 6631 6153 15 1172 6624 7356 16 18 10235 11604 15 11604 11845 10066 18 1189 10009 11867 10100 19 12893 13549 1189 11.104 11002 11867 10100 19 12893 13549 1189 11.104 11002 11867 10100 19 12893 13549 1189 11.104 11002 11867 1010 19 12893 13549 1838 1183 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 11.104 <td< th=""><th>Vs (kts)</th><th>PE (hp)</th><th>PE (hp)</th><th>PE (hp)</th><th>Vs (kts)</th><th>PE (hp)</th><th>PE (hp)</th><th>PE (hp)</th><th>Vs (kts)</th><th>PE Ratio</th><th>PE Ratio</th><th>PE Ratio</th></td<>	Vs (kts)	PE (hp)	PE (hp)	PE (hp)	Vs (kts)	PE (hp)	PE (hp)	PE (hp)	Vs (kts)	PE Ratio	PE Ratio	PE Ratio
5594 6082 5405 15 6558 6631 6153 15 1726 6624 7358 6389 16 7836 6631 7226 16 1183 7788 8742 1565 17 9300 9616 8525 17 1183 10059 11629 11640 10 10978 11445 10066 18 1120 11002 11867 10100 19 112893 11549 19 1120 11302 11867 11000 19 112893 11445 10066 18 1120 11308 11640 20 15064 10 112893 11495 10 1120 11308 11640 20 15064 10 112893 11495 10 11 112893 11495 10 11 112893 11419 20 11269 1122 11 11 1160 11 11589 11 11	14	4715	4928	4577	14	5441	5428	5234	14	1.154	1.101	1.144
6624 7358 6889 16 7836 8021 7226 16 1.183 7788 8742 7505 17 9300 9616 8525 17 1.194 9079 10250 11857 10100 19 12893 13549 11988 19 1.207 11202 13841 11604 20 15064 15969 14119 20 1.245 13895 15725 13285 1579 2 20183 16217 21 1.266 15905 17853 1579 2 20183 16378 12.25 1.266 12.27 1.245 1874 20348 1774 18738 16217 21 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 1.266 1.267 <td>15</td> <td>5594</td> <td>6082</td> <td>5405</td> <td>15</td> <td>6558</td> <td>6631</td> <td>6153</td> <td>15</td> <td>1.172</td> <td>1.090</td> <td>1.138</td>	15	5594	6082	5405	15	6558	6631	6153	15	1.172	1.090	1.138
7788 8742 7505 17 9300 9616 8225 17 1.194 9079 10235 8740 18 10978 11445 10066 18 1.209 10502 13541 11604 20 15064 15969 14119 20 1.245 12102 13841 11604 20 15064 15969 14119 20 1.245 15005 13883 15179 21 17497 18738 16217 21 1.266 15005 17518 23 210183 18119 20 1.245 18074 20588 17318 23 23102 25364 20588 23 1.256 20707 23120 17318 23 24468 20 1.2468 23 1.251 22 1.245 22 1.2468 23 1.251 22 1.245 22 24488 23 1.2418 20 1.245 22 24488	16	6624	7358	6389	16	7836	8021	7226	16	1.183	1.090	1.131
9079 10235 8740 18 10978 11445 10066 18 1.209 10509 11857 10100 19 12893 13549 11988 19 1.227 11505 13641 11604 20 12893 13549 11988 19 1.227 12802 13641 11604 20 12893 13549 11988 19 1.227 13809 15627 13285 21 17497 18738 16217 21 1.266 18174 20348 17318 22 20183 21873 18358 22 1.269 20707 23120 1579 24 26219 23544 22958 25 29492 23574 22556 24 1.266 20707 23128 25908 25 29492 33237 25511 25 1.266 20707 23289 25908 26 22492 33237 25511 26 <td< td=""><td>17</td><td>7788</td><td>8742</td><td>7505</td><td>17</td><td>9300</td><td>9616</td><td>8525</td><td>17</td><td>1.194</td><td>1.100</td><td>1.136</td></td<>	17	7788	8742	7505	17	9300	9616	8525	17	1.194	1.100	1.136
10509 11857 10100 12893 13549 1998 19 1.227 12102 13641 11604 20 15064 15969 14119 20 1.245 1388 15627 13641 11604 20 15064 15969 14119 20 1.245 1388 15627 1388 1679 22 20183 21873 18358 22 1.266 2007 23120 19721 22 20183 21873 18358 23 1.266 20707 23120 19721 24 26509 29492 28364 20588 23 1.266 20716 32894 26509 24940 27 1266 1.266 1.266 20716 32894 26949 37477 31348 27 1.266 20716 32894 26786 41777 31348 27 1.266 2072 26786 27 36486 41929	18	9079	10235	8740	18	10978	11445	10066	18	1.209	1.118	1.152
12102 15641 11604 20 15064 15669 14119 20 1.245 13889 15627 13285 21 17497 18738 16217 21 1.266 15905 17818 22 201873 1838 22 1.260 18724 20348 19721 24 26219 29744 20588 23 1.271 20707 23120 19721 24 26219 29774 20588 23 1.276 29716 32894 26894 26738 26737 34688 27 1.266 29716 32894 28446 27 34688 27 1.266 29716 32894 28446 27 34688 23 1.266 29716 32894 28439 41777 31348 27 1.266 40248 44167 38902 36 47306 4666 41929 1.266 44166 48324 <td< td=""><td>19</td><td>10509</td><td>11857</td><td>10100</td><td>19</td><td>12893</td><td>13549</td><td>11988</td><td>19</td><td>1.227</td><td>1.143</td><td>1.187</td></td<>	19	10509	11857	10100	19	12893	13549	11988	19	1.227	1.143	1.187
13889 15627 13285 21 17497 18738 16217 21 1260 15905 17853 15179 22 20183 21873 18358 22 1.260 18904 23324 20588 23 1.251 20707 23120 19721 24 2619 29174 22955 24 1.269 20707 23120 19721 24 2619 29174 22955 24 1.269 23494 26158 22389 2536 25490 2546 28904 4176 28904 26 1.255 2978 36581 40260 35252 29 43508 50383 38164 29 1.266 36581 40260 35522 29 43508 50383 38164 29 1.265 40248 48324 4274 31 5148 69488 55409 38 1.164 48496 52904 46992 32 <td< td=""><td>20</td><td>12102</td><td>13641</td><td>11604</td><td>20</td><td>15064</td><td>15969</td><td>14119</td><td>20</td><td>1.245</td><td>1.171</td><td>1.217</td></td<>	20	12102	13641	11604	20	15064	15969	14119	20	1.245	1.171	1.217
15905 17853 15179 22 20183 21873 18358 22 1.269 18174 20348 17318 23 23102 25364 20588 23 1.271 20707 23120 19721 24 26158 23 1.271 23494 26158 22389 25 29430 25308 26 22955 24 1.266 29716 32894 28446 27 36343 4177 31348 27 1.255 29716 32894 28446 27 36343 4177 31348 27 1.266 33078 34651 38502 29 43508 46093 34635 28 1.266 40248 4650 35252 29 47308 54686 41929 29 1.189 40248 48324 42774 31 51403 59129 45968 31 1.169 55490 58180 51757 33<	21	13889	15627	13285	21	17497	18738	16217	21	1.260	1.199	1.221
18174 20348 17318 23 23102 25364 20588 23 1.271 20707 23120 19721 24 26219 29174 22955 24 1.255 26509 29494 2618 25 29492 33237 25511 25 1.255 26509 29494 28446 27 37488 28304 26 1.255 26509 29494 28437 37488 28304 26 1.255 29716 32894 28446 27 3643 4177 31348 27 1.255 33078 36510 31769 28 39878 46093 34635 28 1.256 40248 44167 38902 30 47306 54686 41929 30 1.175 44166 48324 42774 31 51409 59129 45968 31 1.175 48496 52904 46992 32 61348	22	15905	17853	15179	22	20183	21873	18358	22	1.269	1.225	1.209
20707 23120 19721 24 26219 29174 22955 24 1.266 23494 26158 22389 25 29492 33237 25511 25 1.255 26509 29430 25308 26 32877 37468 28304 26 1.240 29716 32894 28446 27 36343 44777 31348 27 1.223 33078 36510 35525 29 43508 5083 38164 29 1.125 40248 44167 38902 29 43508 5088 30 1.116 40248 44167 38902 30 47306 54686 41929 30 1.116 40248 52904 46992 32 51403 59129 45968 31 1.116 53490 58180 51757 31 61348 5949 50491 31 1.147 59478 64515 57348	23	18174	20348	17318	23	23102	25364	20588	23	1.271	1.247	1.189
23494 26158 22389 25 29492 33237 25511 25 1.255 26509 29430 25308 26 32877 37468 26 1.240 26509 29430 25308 26 32877 37468 26 1.240 26509 29430 25308 26 39878 46093 34635 2 1.223 33048 36581 27 1.223 33058 36686 41929 36 1.120 36686 44167 38902 30 47306 54686 41929 30 1.175 44166 48324 42774 31 51403 55129 45686 41929 30 1.175 44846 5204 45922 30 1.175 44846 5204 45968 31 1.164 48496 5204 45968 31 1.164 48496 5204 46992 32 5110 30 1.175 48496 52948 55409 56488 55409	24	20707	23120	19721	24	26219	29174	22955	24	1.266	1.262	1.164
26509 29430 25308 26 32877 37468 28304 26 1.240 29716 32894 28446 27 36343 41777 31348 27 1.223 33078 36581 40260 35252 29 43508 50383 38164 29 1.223 40248 44167 38902 30 47306 54686 41929 30 1.175 44166 48324 42774 31 51403 59129 45968 31 1.189 44166 48324 42774 31 51403 59129 45968 31 1.175 44166 48496 52904 46992 32 61348 69488 50411 32 1.156 53490 58180 51757 33 61348 69488 55409 31 1.147 66855 72350 64111 35 75415 84561 68238 31.134 101274	25	23494	26158	22389	25	29492	33237	25511	25	1.255	1.271	1.139
29716 32894 28446 27 36343 41777 31348 27 1.223 33078 36510 31769 28 39878 46093 34635 28 1.206 36581 40260 35252 29 43508 5083 38164 29 1.189 40248 44167 38902 30 47306 54686 41929 30 1.175 40416 48324 42774 31 51403 59129 45968 31 1.164 48496 52904 46992 32 55997 69488 55409 31 1.164 53490 58180 5778 6770 76191 61251 31 1.147 59478 64515 57348 34 67770 76191 61251 34 1.13 50497 6855 72350 64111 35 75615 84561 68238 35 1.13 76039 82164	26	26509	29430	25308	26	32877	37468	28304	26	1.240	1.273	1.118
33078 36510 31769 28 39878 46093 34635 28 1.206 36581 40260 35252 29 43508 50383 38164 29 1.175 40248 44167 38902 30 47306 54686 41929 30 1.175 44166 48324 42774 31 51403 59129 45968 31 1.164 48496 52904 46992 32 55997 63948 50411 32 1.164 59478 64515 57348 34 67770 76191 61251 31 1.147 59478 64515 57348 34 6770 76191 61251 34 1.13 76039 82164 72424 36 85242 95107 76820 36 1.13 87418 94422 82652 37 96979 108271 8733 37 1.109 101274 109496 <t< td=""><td>27</td><td>29716</td><td>32894</td><td>28446</td><td>27</td><td>36343</td><td>41777</td><td>31348</td><td>27</td><td>1.223</td><td>1.270</td><td>1.102</td></t<>	27	29716	32894	28446	27	36343	41777	31348	27	1.223	1.270	1.102
36581 40260 35252 29 43508 50383 38164 29 1.189 40248 44167 38902 30 47306 54686 41929 30 1.175 44166 48324 42774 31 51403 59129 45968 31 1.164 48496 52904 46992 32 55997 63948 50411 32 1.155 53490 58180 51757 33 61348 6948 55409 33 1.147 59478 64515 51757 33 61348 6948 55409 33 1.147 59478 64511 35 75615 84561 68238 31 1.139 66855 72350 64111 35 75615 84561 68238 35 1.131 101274 10946 95084 36 11010 36 1.0010 117717 127593 109860 39 127665	28	33078	36510	31769	28	39878	46093	34635	28	1.206	1.262	1.090
40248 44167 38902 30 47306 54686 41929 30 1.175 44166 48324 42774 31 51403 59129 45968 31 1.164 48496 52904 46992 32 55997 63948 50411 32 1.155 53490 58180 51757 33 61348 69488 55409 33 1.147 59478 64515 57348 34 67770 76191 61251 34 1.139 66855 72350 64111 35 75615 84561 68238 35 1.131 76039 82164 72424 36 85242 95107 76820 36 1.131 80174 109406 95084 38 111078 124339 100110 38 1.094 11771 127593 109860 39 127665 143358 15565 132615 40 1.074 180182	59	36581	40260	35252	59	43508	50383	38164	59	1.189	1.251	1.083
44166 48324 42774 31 51403 59129 45968 31 1.164 48496 52904 46992 32 55997 63948 50411 32 1.155 53490 58180 51757 33 61348 69488 55409 33 1.147 59478 64515 57348 34 67770 76191 61251 34 1.139 66855 72350 64111 35 75615 84561 68238 35 1.131 76039 82164 72424 36 85242 95107 76820 36 1.131 87418 94422 82652 37 96979 108271 87333 37 1.109 101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 158615 40 1.074 18626 172407 </td <td>30</td> <td>40248</td> <td>44167</td> <td>38902</td> <td>30</td> <td>47306</td> <td>54686</td> <td>41929</td> <td>30</td> <td>1.175</td> <td>1.238</td> <td>1.078</td>	30	40248	44167	38902	30	47306	54686	41929	30	1.175	1.238	1.078
48496 52904 46992 32 55997 63948 50411 32 1.155 53490 58180 51757 33 61348 69488 55409 33 1.147 59478 64515 57348 34 67770 76191 61251 34 1.139 66855 72350 64111 35 75615 84561 68238 35 1.131 76039 82164 72424 36 85242 95107 76820 36 1.121 87418 94422 82652 37 96979 108271 87333 37 1.109 101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 11558 39 1.085 157629 172407 145954 41 167972 188946 151836 41 1.060 228320 25	31	44166	48324	42774	31	51403	59129	45968	31	1.164	1.224	1.075
53490 58180 51757 33 61348 69488 55409 33 1.147 59478 64515 57348 34 67770 76191 61251 34 1.139 66855 72350 64111 35 75615 84561 68238 35 1.131 76039 82164 72424 36 85242 95107 76820 36 1.121 87418 94422 82652 37 96979 108271 87333 37 1.109 87418 94422 82652 37 96979 108271 87333 37 1.109 87418 94422 82652 37 96979 108271 87333 37 1.109 87418 94422 82654 38 111078 124339 100110 38 1.097 8742 126917 40 146705 165075 132615 40 1.074 87629 17247 172221	32	48496	52904	46992	32	55997	63948	50411	32	1.155	1.209	1.073
59478 64515 57348 34 67770 76191 61251 34 1.139 66855 72350 64111 35 75615 84561 68238 35 1.131 76039 82164 72424 36 85242 95107 76820 36 1.121 87418 94422 82652 37 96979 108271 87333 37 1.109 101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 115258 39 1.085 136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 228320	33	53490	58180	51757	33	61348	69488	55409	33	1.147	1.194	1.071
66855 72350 64111 35 75615 84561 68238 35 1.131 76039 82164 72424 36 85242 95107 76820 36 1.121 87418 94422 82652 37 96979 108271 87333 37 1.109 101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 115258 39 1.085 136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 228320 252819 210073 44 240758 267356 214306 44 1.054 254968<	34	59478	64515	57348	34	67770	76191	61251	34	1.139	1.181	1.068
76039 82164 72424 36 85242 95107 76820 36 1.121 87418 94422 82652 37 96979 108271 87333 37 1.109 101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 115258 39 1.087 136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252801 210073 44 240758 267356 214306 45 1.046 2	32	66855	72350	64111	32	75615	84561	68238	32	1.131	1.169	1.064
87418 94422 82652 37 96979 108271 87333 37 1.109 101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 115258 39 1.085 136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252801 210073 44 240758 267356 214306 45 1.046 254968 282500 233534 45 266793 236794 45 1.046	36	76039	82164	72424	36	85242	95107	76820	36	1.121	1.158	1.061
101274 109496 95084 38 111078 124339 100110 38 1.097 117717 127593 109860 39 127665 143358 115258 39 1.085 136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252801 210073 44 240758 267356 214306 44 1.054 254968 282500 233534 45 266793 296893 236794 45 1.046	37	87418	94422	82652	37	62696	108271	87333	37	1.109	1.147	1.057
117717 127593 109860 39 127665 143358 115258 39 1.085 136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 2528310 236581 240758 267356 214306 44 1.054 254968 282500 233534 45 266793 296893 236794 45 1.046	38	101274	109496	95084	38	111078	124339	100110	38	1.097	1.136	1.053
136626 148673 126917 40 146705 165075 132615 40 1.074 157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252831 210073 44 240758 267356 214306 44 1.054 254968 282500 233534 45 266793 296893 236794 45 1.046	39	117717	127593	109860	39	127665	143358	115258	39	1.085	1.124	1.049
157629 172407 145954 41 167972 188946 151836 41 1.066 180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252801 210073 44 240758 267356 214306 44 1.054 254968 282500 233534 45 266793 296893 236794 45 1.046	40	136626	148673	126917	40	146705	165075	132615	40	1.074	1.110	1.045
180182 198201 166473 42 191065 214247 172221 42 1.060 203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252801 210073 44 240758 267356 214306 44 1.054 254968 282500 233534 45 266793 296893 236794 45 1.046	41	157629	172407	145954	41	167972	188946	151836	41	1.066	1.096	1.040
203766 225319 187931 43 215477 240364 193106 43 1.057 228320 252801 210073 44 240758 267356 214306 44 1.054 254968 282500 233534 45 266793 296893 236794 45 1.046	42	180182	198201	166473	42	191065	214247	172221	42	1.060	1.081	1.035
228320 252801 210073 44 240758 267356 214306 44 1.054 1 254968 282500 233534 45 266793 296893 236794 45 1.046 1	43	203766	225319	187931	43	215477	240364	193106	43	1.057	1.067	1.028
254968 282500 233534 45 266793 296893 236794 45 1.046 1	44	228320	252801	210073	44	240758	267356	214306	4	1.054	1.058	1.020
2007 2007 2007	45	254968	282500	233534	45	266793	296893	236794	45	1.046	1.051	1.014

Table A7a. AxWJ, Exp17, LDV nozzles installed, DES PE prediction

LAMBDA LWL S (no Skeg) WT RHO NU Ca	979.4 96696 36491 1.9905 1.2817E-05	ft ft ² LT (lbf*sec ²)/ft ⁴ ft ² /sec	MODEL 34.121 28.703 83.055 2000.6 1.9365 1.0692E-05 0.0000	ft ft ² lbs (lbf*sec ²)/ft ⁴ ft ²/sec			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CF
knots	HP	KW	HP	KW	50,56	28 258	Potenti (Peril
15.0	6636.3	4948.7	4010.8	2990.8	0.143	0.479	0.925
20.0	15354.4	11449.8	9189.2	6852.4	0.190	0.639	0.916
25.0	30465.9	22718.4	17487.3	13040.3	0.238	0.799	0.987
30.0	49613.9	36997.1	29590.7	22065.8	0.285	0.959	0.882
36.0	88007.9	65627.5	50082.1	37346.2	0.342	1.150	0.966
39.0	132308.4	98662.4	63101.4	47054.7	0.371	1.246	1.387
			78157.6	58282.1	0.399	1.342	1.899

Table A7b. AxWJ appended (LDV nozzles), comparison to AxWJ bare hull and JHSS baseline BSS fully appended

AxWJ	with LDV No.	zzles vs AxW	J BH	AxI	WJ Appended v	s BSS Apper	nded
	Exp3 AxWJ Bare Hull DES	Exp17 AxWJ LDV NOZ DES	NOZ/BH DES		Exp40 BSS Apnd w/Flap DES	Exp17 AxWJ LDV NOZ DES	DES
Vs (kts)	PE (hp)	PE (hp)	PE Ratio	Vs (kts)	PE (hp)	PE (hp)	PE Ratio
15	6558	6636	1.012	15	7868	6636	0.843
20	15064	15354	1.019	20	16868	15354	0.910
25	29492	30466	1.033	25	31987	30466	0.952
30	47306	49614	1.049	30	53157	49614	0.933
36	85242	88008	1.032	36	96351	88008	0.913
39	127665	132308	1.036	39	141663	132308	0.934
42	191065	196525	1.029	42	209631	196525	0.937

Avg: 1.030 Avg: 0.918

Table A8. AxWJ powering, model-scale rotor force measurements, as tested

		XX	2000	-		an in the same	-		
		1	2	ж	4	1	2	m	4
۸S	Rotor	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
(kts)	RPM	T (lbs)	T (Ibs)	T (Ibs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
5.04	872.3	1.73	1.71	1.62	2.03	0.95	1.28	1.40	1.21
20.02	1179.6	3.07	3.00	3.04	3.46	1.92	2.37	2.49	2.11
25.05	1483.2	4.73	4.58	4.79	5.24	3.11	3.57	3.78	3.26
90.08	1685.2	6.04	5.83	6.17	6.63	4.05	4.46	4.74	4.17
36.05	2051.4	8.88	8.56	9.16	9.61	90.9	6.33	6.70	60.9
9.10	2355.2	11.74	11.34	12.16	12.57	8.07	8.19	8.53	7.95
12.11	2720.2	15.88	15.37	16.45	16.75	10.90	10.88	10.95	10.47

		AXWJ Model	2005	2000				
	1	2	e	4	1	2	m	4
Rotor	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
RPM	T (lbs)	T (lbs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
850	1.64	1.63	1.53	1.94	0.89	1.20	1.33	1.16
1000	2.25	2.21	2.17	2.59	1.32	1.72	1.83	1.55
1250	3.43	3.34	3.41	3.84	2.17	2.63	2.77	2.35
1500	4.83	4.68	4.90	5.34	3.18	3.64	3.85	3.33
1750	6.49	6.27	6.65	7.11	4.37	4.76	5.07	4.48
2000	8.44	8.14	8.70	9.16	5.76	6.05	6.41	5.80
2250	10.69	10.32	11.06	11.49	7.34	7.51	7.87	7.28
2500	13.29	12.84	13.77	14.14	9.13	9.19	9.46	8.91
2750	16.25	15.73	16.83	17.12	11.16	11.12	11.16	10.68

	•	C ISDOLL CAN	1 no 1 no 1 700	2	100		1	-	
		1	2	m	4	1	2	m	4
۸S	Rotor	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
(kts)	RPM	T (lbs)	T (Ibs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
15	870.8	1.72	1.70	1.62	2.03	0.95	1.27	1.39	1.21
20	1179.0	3.07	3.00	3.04	3.46	1.91	2.37	2.49	2.10
25	1479.2	4.71	4.56	4.76	5.21	3.09	3.55	3.76	3.24
30	1684.0	6.03	5.83	6.16	6.62	4.04	4.45	4.73	4.16
36	2044.0	8.81	8.50	9.09	9.54	6.02	6.29	99.9	6.05
39	2345.9	11.65	11.24	12.06	12.47	8.00	8.13	8.47	7.89
42	2706.4	15.71	15.20	16.27	16.58	10.79	10.77	10.86	10.37

Table A9. AxWJ, faired model-scale rotor forces data, over- and under-propelled, 25 and 36 knots, as tested

	-									
			1	2	n	4	1	2	9	4
	Rotor	Ð	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
	RPM	(lps)	T (lbs)	T (Ibs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	O (in-lbs)	O (in-lbs)
10% RPM	1612	2.95	80.9	5.59	5.72	5.94	3.81	4.45	4.28	3.78
+5% RPM	1539	4.55	5.53	5.03	5.17	5.34	3.48	4.09	3.90	3.43
Desired Fd	1466	90'9	5.00	4.50	4.71	4.78	3.17	3.71	3.55	3.07
-5% RPM	1392	7.49	4.49	3.99	4.32	4.24	2.88	3.33	3.21	2.70
-10% RPM	1319	8.84	4.01	3.51	4.02	3.73	2.61	2.93	2.89	2.32

	36	knots Ship	Speed: Ove	er- & Unde	r-Propellec	d Faired Rot	tor Forces	Data, Test	16	
			1	2	m	4	1	2	е	4
	Rotor	6	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
	RPM	(lbs)	T (lbs)	T (lbs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	O (in-lbs)	O (in-lbs)
+10% RPM	2245	5.64	11.25	10.62	11.81	11.36	7.61	7.58	7.80	7.24
+5% RPM	2143	8.76	10.17	9.55	10.36	10.21	6.86	7.01	7.11	6.61
Desired Fd	2041	11.65	9.15	8.50	9.00	9.12	6.14	6.47	6.46	5.99
-5% RPM	1938	14.30	8.19	7.48	7.74	8.10	5.45	5.94	5.84	5.38
-10% RPM	1836	16.72	7.30	6.48	6.57	7.13	4.78	5.45	5.27	4.78

Table A9. AxWJ, faired rotor forces data, over- and under-propelled, 25 and 36 knots, as tested - continued

	2	ss-Plotted	Cross-Plotted Over/Under Propelled Test, 25 and 36 knots	er Propelle	d Test, 25	and 36 knot	Cross-Plotted Over/Under Propelled Test, 25 and 36 knots
	۸S	Rotor	Port Out	Port In	Stbd In	Stbd Out	Total T
	(kts)	RPM	T (Ibs)	T (Ibs)	T (lbs)	T (lbs)	(lps)
Traditional	25	1479	4.71	4.56	4.76	5.21	19.24
Over/Under	25	1466	2.00	4.50	4.71	4.78	18.99
Difference		%6.0-	6.2%	-1.3%	-1.2%	-8.3%	-1.3%
	ΝS	Rotor	Port Out	Port In	Stbd In	Stbd Out	Total Q
	(kts)	RPM	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	(in-lbs)
Traditional	25	1479	3.09	3.55	3.76	3.24	13.64
Over/Under	25	1466	3.17	3.71	3.55	3.07	13.49
Difference		%6.0-	2.4%	4.6%	-5.6%	-5.4%	-1.1%
	NS	Rotor	Port Out	Port In	Stbd In	Stbd Out	Total T
	(kts)	RPM	T (Ibs)	T (lbs)	T (Ibs)	T (lbs)	(lps)
Traditional	36	2044	8.81	8.50	60.6	9.54	35.95
Over/Under	36	2041	9.15	8.50	9.00	9.12	35.77
Difference		-0.2%	3.8%	%0.0	-1.0%	-4.4%	-0.5%
	۸S	Rotor	Port Out	Port In	Stbd In	Stbd Out	Total Q
	(kts)	RPM	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	(in-lbs)
Traditional	36	2044	6.02	6.29	99.9	6.05	25.02
Over/Under	36	2041	6.14	6.47	6.46	5.99	25.05
Difference		-0.2%	2.0%	2.8%	-3.0%	-1.1%	0.1%

Table A10. AxWJ, estimated model-scale rotor forces, over- and under-propelled, for speeds not tested

		15	knots ESTIM	ATED Ove	r- & Under	-Propulsion	Rotor For	ces		
			1	2	m	4	1	2	m	4
	Rotor	9	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
	RPM	(Ips)	T (lbs)	T (lbs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	O (in-lbs)	O (in-lbs)
+10% RPM	958	1.46	2.13	2.11	1.41	2.45	1.12	1.83	1.62	1.70
+5% RPM	915	1.97	1.92	1.90	1.50	2.23	1.03	1.55	1.50	1.45
Desired Fd	871	2.44	1.72	1.70	1.62	2.02	0.95	1.27	1.38	1.21
-5% RPM	827	2.88	1.52	1.51	1.76	1.83	0.87	0.99	1.27	0.96
-10% RPM	784	3.29	1.33	1.33	1.94	1.64	0.81	0.70	1.17	0.70

		-						
	1	2	3	4	+1	2	m	4
6	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
(Ips)	T (lbs)	T (lbs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
2.13	3.79	3.72	3.32	4.22	2.30	3.04	2.94	2.73
3.13	3.42	3.35	3.16	3.83	2.10	2.71	2.71	2.42
4.07	3.07	3.00	3.04	3.46	1.92	2.37	2.48	2.11
4.95	2.73	2.66	2.98	3.10	1.75	2.02	2.27	1.79
5.78	2.41	2.34	2.96	2.77	1.59	1.67	2.07	1.47
	(lbs) 2.13 3.13 4.07 5.78	(lbs) T (lbs) 2.13 3.79 3.13 3.42 4.07 3.07 4.95 2.73 5.78 2.41		7 (lbs) 3.79 3.42 3.42 2.73 2.73	T (lbs) T (lbs) . 3.79 3.72 3.42 3.35 3.00 2.73 2.66 2.41 2.34	7 (lbs) T (lbs) T (lbs) 3.79 3.72 3.32 3.42 3.35 3.16 3.07 3.00 3.04 2.73 2.66 2.98 2.41 2.34 2.96	7 (lbs) T (lbs) T (lbs) T (lbs) Qut 13.79 3.72 3.32 4.22 3.42 3.35 3.16 3.83 2.73 2.66 2.98 3.10 2.41 2.34 2.96 2.77	T (lbs) T (lbs) T (lbs) Q (in-lbs) C (in-lbs

		200	KIIOUS ESTAP	A I ED OVE	r- & Under	-Propulsion	I ROLD FOR	Ces		
			1	2	Э	4	1	2	e	4
	Rotor	5	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
	RPM	(Ips)	T (Ibs)	T (lbs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
+10% RPM	1852	4.20	7.42	7.25	7.89	8.14	4.93	5.22	5.72	4.95
+5% RPM	1768	6.36	6.71	6.52	6.97	7.36	4.48	4.84	5.21	4.56
Desired Fd	1684	8.40	6.03	5.83	6.16	6.62	4.05	4.45	4.74	4.17
-5% RPM	1600	10.33	5.37	5.16	5.45	5.91	3.64	4.05	4.29	3.77
-10% RPM	1516	12.15	4.75	4.53	4.85	5.24	3.27	3.63	3.86	3.36

Table A10. AxWJ, estimated model-scale rotor forces, over- and under-propelled, for speeds not tested - continued

		39	knots ESTIM	ATED Ove	r- & Under	-Propulsion	Rotor For	ces		
			1	2	m	4	1	2	m	4
	Rotor	5	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
	RPM	(Ips)	T (Ibs)	T (Ibs)	T (Ibs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
+10% RPM	2581	4.84	14.51	13.86	15.98	15.51	9.92	9.59	10.28	9.40
+5% RPM	2463	9.30	13.04	12.54	13.96	13.95	8.94	8.84	9.35	8.63
Desired Fd	2346	13.45	11.64	11.25	12.06	12.47	8.00	8.13	8.47	7.88
-5% RPM	2229	17.29	10.33	66.6	10.29	11.08	7.11	7.44	7.64	7.14
-10% RPM	2111	20.82	9.11	8.77	8.64	9.77	6.25	6.79	98.9	6.42

		42	KNOTS ESTIM	ALED OVE	r- & Under	-Propulsion	Rotor For	ces		
			+1	2	ю	4	1	2	m	4
	Rotor	0	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
	RPM	(Ips)	T (Ibs)	T (Ibs)	T (Ibs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
+10% RPM	2977	3.12	19.63	18.46	21.73	20.70	13.28	12.70	13.31	12.22
+5% RPM	2841	9.45	17.61	16.81	18.92	18.58	12.01	11.71	12.05	11.28
Desired Fd	2706	15.37	15.70	15.20	16.27	16.57	10.78	10.76	10.85	10.36
-5% RPM	2571	20.87	13.90	13.64	13.79	14.68	9.61	9.86	9.72	9.46
-10% RPM	2435	25.96	12.22	12.12	11.48	12.89	8.49	9.00	8.66	8.58

Table A11. AxWJ model-scale rotor forces estimated at corrected ship propulsion point

HSS AX	WJ Power	ring Data Es	timate (Usi	ng Over/	Jnder Data)	at Correct	ed Ship Pr	opulsion Po	oint (Corre	cted FD)
		Corrected	1	2	3	4	1	2	3	4
۸S	Rotor	5	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
nots)	RPM	(lps)	T (lbs)	T (Ibs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
15	886	2.28	1.79	1.77	1.63	5.09	0.98	1.37	1.42	1.29
20	1196	3.81	3.17	3.10	3.07	3.56	1.97	2.46	2.54	2.20
25	1485	2.67	5.14	4.64	4.82	4.93	3.25	3.81	3.64	3.16
30	1707	7.86	6.21	6.01	6.37	6.82	4.16	4.56	4.86	4.27
36	2068	10.90	9.42	8.78	9.36	9.41	6.33	6.61	6.63	6.15
39	2372	12.58	11.94	11.53	12.46	12.79	8.20	8.28	8.66	8.04
42	2730	14.37	16.03	15.48	16.72	16.91	10.99	10.92	11.06	10.52

		Original	1	2	3	4	1	2	3	4
SA	Rotor	5	Port Out	Port In	Stbd In	Stbd Out	Port Out	Port In	Stbd In	Stbd Out
(knots)	RPM	(lps)	T (lbs)	T (Ibs)	T (Ibs)	T (Ibs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)
15	871	2.44	1.72	1.70	1.62	2.02	0.95	1.27	1.38	1.21
20	1179	4.07	3.07	3.00	3.04	3.46	1.92	2.37	2.48	2.11
25	1466	90'9	5.00	4.50	4.71	4.78	3.17	3.71	3.55	3.07
30	1684	8.40	6.03	5.83	6.16	6.62	4.05	4.45	4.74	4.17
36	2041	11.65	9.15	8.50	9.00	9.12	6.14	6.47	6.46	5.99
39	2346	13.45	11.64	11.25	12.06	12.47	8.00	8.13	8.47	7.88
42	2706	15.37	15.70	15.20	16.27	16.57	10.78	10.76	10.85	10.36

VS RPM FD Port Out Port In Stbc (kts) Δ (%)	4 7	4 n Stbd Out) AT (%) 3.5 3.0	1 Port Out AQ (%) 2.9 2.6	2 Port In AQ (%) 7.6	3 Stbd In ∆Q (%)	4
A (%) Δ (%) ΔT	Port In 5 ΔT (%) 4.0 3.2	01	Port Out ∆Q (%) 2.9 2.6	Port In ∆Q (%) 7.6	Stbd In ∆Q (%)	
Δ (%) Δ (%) ΔT (%) ΔT (%) 1.7 -6.5 4.1 4.0 1.4 -6.5 3.2 3.2 1.3 -6.5 2.8 3.1 1.3 -6.5 3.0 3.2	ΔT (%) 4.0 3.2 3.1		∆Q (%) 2.9 2.6	∆Q (%) 7.6	∆Q (%)	Stbd Out
1.7 -6.5 4.1 4.0 1.4 -6.5 3.2 3.2 1.3 -6.5 2.8 3.1 1.3 -6.5 3.0	3.2		2.9	7.6		06 (%)
1.4 -6.5 3.2 3.2 1.3 -6.5 2.8 3.1 1.3 -6.5 3.0	3.2		5.6	•	2.8	7.1
1.3 -6.5 2.8 3.1	3.1		i	5.4	2.5	4.2
1.3 -6.5 3.0 3.2	1		5.6	2.7	5.6	3.2
	3.2		2.8	2.4	2.7	5.6
1.3 -0.5 2.9 3.3	3.3		3.1	2.2	2.7	2.8
1.1 -6.5 2.5 2.5	2.5		2.5	1.9	2.2	2.1
0.9 -6.5 2.1 1.8	1.8		1.9	1.5	1.9	1.5
1.3 -6.5 2.8	2.8			2	6	

Table A12. AxWJ Model 5662 resistance and powering measurement uncertainties

25 knot Ship Speed	11-11-	Nominal	Bias	Deceleles	I le a set elete.		Four Shafts
	Units	2100-2100-		Precision	Uncertainty	/=====N	
Measurement		Mean	Error	Error	(units)	(percent)	(percent)
			±	±	±	±	±
Speed	ft/sec	7.24	0.002	0.001	0.002	0.03	(5)
Resistance	lbf	15.15	0.059	0.036	0.069	0.46	-
INbd Prop Shaft Rate	RPM	1484.21	0.009	0.911	0.911	0.06	+:
OUTbd Prop Shaft Rate	RPM	1483.23	0.009	1.234	1.234	0.08	0.07
INbd Shaft Thrust - combined	lbf	8.76	0.057	0.037	0.068	0.78	-
OUTbd Shaft Thrust - combined	lbf	9.99	0.057	0.042	0.071	0.71	0.74
INbd Shaft Torque - combined	lbf-in	7.33	0.094	0.146	0.174	2.37	
OUTbd Shaft Torque - combined	lbf-in	6.55	0.094	0.079	0.123	1.88	2.12
INbd Shaft Power - combined	hP	0.173	0.0022	0.0034	0.0041	2.37	(-
OUTbd Shaft Power - combined	hP	0.154	0.0022	0.0019	0.0029	1.88	2.13
36 knot Ship Speed	Units	Nominal	Bias	Precision	Uncertainty		
Measurement							Four Shafts
Mododicillott		Mean	Error	Ептог	(units)	(percent)	Four Shafts (percent)
Modouroment		Mean	Error ±	Error ±		(percent)	
Speed	ft/sec	Mean 10.41			(units)		(percent)
Speed	ft/sec		±	±	(units)	±	(percent)
		10.41	± 0.003	± 0.000	(units) ± 0.003	0.03	(percent) ±
Speed Resistance INbd Prop Shaft Rate	lbf	10.41 29.75	± 0.003 0.063	± 0.000 0.082	(units) ± 0.003 0.103	0.03 0.35	(percent) ±
Speed Resistance INbd Prop Shaft Rate OUTbd Prop Shaft Rate	lbf RPM	10.41 29.75 2053.83	± 0.003 0.063 0.011	± 0.000 0.082 2.407	(units) ± 0.003 0.103 2.407	0.03 0.35 0.12	(percent) ±
Speed Resistance INbd Prop Shaft Rate OUTbd Prop Shaft Rate INbd Shaft Thrust - combined	lbf RPM RPM	10.41 29.75 2053.83 2053.12	± 0.003 0.063 0.011 0.011	± 0.000 0.082 2.407 1.860	(units) ± 0.003 0.103 2.407 1.860	0.03 0.35 0.12 0.09	(percent) ±
Speed Resistance INbd Prop Shaft Rate OUTbd Prop Shaft Rate INbd Shaft Thrust - combined OUTbd Shaft Thrust - combined	lbf RPM RPM lbf	10.41 29.75 2053.83 2053.12 16.98	± 0.003 0.063 0.011 0.011 0.060	± 0.000 0.082 2.407 1.860 0.033	(units) ± 0.003 0.103 2.407 1.860 0.068	0.03 0.35 0.12 0.09 0.40	(percent) ± 0.10
Speed Resistance INbd Prop Shaft Rate OUTbd Prop Shaft Rate INbd Shaft Thrust - combined OUTbd Shaft Thrust - combined INbd Shaft Torque - combined	Ibf RPM RPM Ibf Ibf	10.41 29.75 2053.83 2053.12 16.98 18.49	± 0.003 0.063 0.011 0.011 0.060 0.060	± 0.000 0.082 2.407 1.860 0.033 0.061	(units) ± 0.003 0.103 2.407 1.860 0.068 0.085	0.03 0.35 0.12 0.09 0.40 0.46	(percent) ± 0.10
Speed Resistance	Ibf RPM RPM Ibf Ibf	10.41 29.75 2053.83 2053.12 16.98 18.49 12.97	± 0.003 0.063 0.011 0.011 0.060 0.060 0.096	± 0.000 0.082 2.407 1.860 0.033 0.061 0.172	(units) ± 0.003 0.103 2.407 1.860 0.068 0.085 0.197	0.03 0.35 0.12 0.09 0.40 0.46 1.52	(percent) ± 0.10 - 0.43

Table A13. AxWJ BH (unpowered), dynamic sinkage and pitch, at three ship displacements

		Heavy (HVY)		Design (DES)	Design (DES)			Light (LITE)	
VS	Sinkage FP	Sinkage AP	Pitch Angle	Sinkage FP	Sinkage AP	Pitch Angle	Sinkage FP	Sinkage AP	Pitch Angle
(Knots)	(£)	(L)	(degrees)	(H)	(#)	(degrees)		(Ħ.)	(degrees)
15	0.43	0.05	-0.02	0.50	0.14	-0.02	0.48	0.00	-0.02
16	0.50	0.07	-0.03	0.57	0.16	-0.03	0.56	0.13	-0.03
17	0.58	0.08	-0.03	0.63	0.13	-0.03	0.62	0.12	-0.03
18	0.67	0.07	-0.04	0.68	60.0	-0.04	0.67	0.00	-0.03
61	0.77	80.0	-0.04	0.75	90.0	-0.04	0.73	0.07	-0.04
20	0.88	0.10	-0.05	0.82	90.0	-0.05	0.80	90.0	-0.04
11	0.98	0.13	-0.05	0.91	0.07	-0.05	0.88	90.0	-0.05
22	1.09	0.18	-0.05	1.01	0.11	-0.05	86.0	0.08	-0.05
33	1.20	0.24	-0.06	1.12	0.16	-0.06	1.10	0.10	-0.06
24	1.30	0.30	-0.06	1.24	0.21	-0.06	1.22	0.12	-0.07
52	1.41	0.35	-0.06	1.37	0.25	-0.07	1.36	0.14	-0.07
56	1.53	0.40	-0.07	1.51	0.28	-0.07	1.51	0.15	-0.08
27	1.66	0.43	-0.07	1.67	0.29	-0.08	1.68	0.14	-0.09
28	1.80	0.44	-0.08	1.84	0.27	-0.09	1.86	0.11	-0.11
29	1.97	0.44	-0.09	2.03	0.24	-0.11	2.06	0.07	-0.12
30	2.17	0.42	-0.11	2.24	0.20	-0.12	2.28	0.02	-0.14
31	2.38	0.40	-0.12	2.46	0.15	-0.14	2.51	-0.03	-0.15
32	2.61	0.38	-0.13	2.70	0.11	-0.16	2.75	-0.08	-0.17
33	2.84	0.38	-0.15	2.94	0.09	-0.17	2.99	-0.10	-0.19
34	3.06	0.42	-0.16	3.17	0.12	-0.18	3.22	-0.09	-0.20
35	3.26	0.52	-0.17	3.37	0.20	-0.19	3.42	-0.03	-0.21
36	3.41	69.0	-0.16	3.53	0.35	-0.19	3.58	0.10	-0.21
37	3.48	0.95	-0.15	3.63	0.59	-0.18	3.68	0.31	-0.20
38	3.46	1.32	-0.13	3.64	0.94	-0.16	3.69	0.61	-0.19
39	3.33	1.81	-0.09	3.54	1.39	-0.13	3.61	1.02	-0.16
40	3.06	2.43	-0.04	3.33	1.95	-0.08	3.41	1.53	-0.11
41	2.67	3.15	0.03	2.99	2.62	-0.02	3.10	2.13	-0.06
42	2.17	3.95	0.11	2.54	3.36	0.05	2.68	2.81	0.01
43	1.58	4.79	0.19	2.00	4.15	0.13	2.19	3.53	0.08
44	0.99	5.59	0.28	1.44	4.93	0.21	1.68	4.23	0.15
45	0.50	6.26	0.35	0.93	5.65	0 29	1 24	7 85	0 22

Table A14. AxWJ, dynamic sinkage and pitch, powered vs. unpowered

	H	SS Axial Wat	JHSS Axial Water Jet (AxWJ), Design (DES) Displacement	, Design (DES	s) Displaceme	ent
	Bare	Bare Hull (Unpowered)	red)	8	Waterjet Powered	pa
۸S	Sinkage FP	Sinkage AP	Pitch Angle	Sinkage FP	Sinkage AP	Pitch Angle
(Knots)	(ft)	(ft)	(degrees)	(ft)	(ft)	(degrees)
15	0.50	0.14	-0.02	0.27	0.36	0.00
16	0.57	0.16	-0.03	0.39	0.28	0.01
17	0.63	0.13	-0.03	0.46	0.28	0.01
18	0.68	0.09	-0.04	0.50	0.33	0.01
19	0.75	90.0	-0.04	0.53	0.43	0.00
20	0.82	90.0	-0.05	0.55	0.53	0.00
21	0.91	0.07	-0.05	0.58	0.64	0.00
22	1.01	0.11	-0.05	0.62	0.73	0.00
23	1.12	0.16	-0.06	0.67	0.81	0.00
24	1.24	0.21	-0.06	0.75	0.87	00.00
25	1.37	0.25	-0.07	0.85	0.91	0.00
56	1.51	0.28	-0.07	0.97	0.92	-0.01
27	1.67	0.29	-0.08	1.12	0.92	-0.01
28	1.84	0.27	-0.09	1.29	06.0	-0.02
59	2.03	0.24	-0.11	1.48	0.88	-0.03
30	2.24	0.20	-0.12	1.69	0.85	-0.05
31	2.46	0.15	-0.14	1.90	0.84	-0.06
32	2.70	0.11	-0.16	2.12	0.85	-0.08
33	2.94	0.09	-0.17	2.32	0.89	-0.09
34	3.17	0.12	-0.18	2.51	0.97	-0.10
35	3.37	0.20	-0.19	2.66	1.11	-0.10
36	3.53	0.35	-0.19	2.77	1.31	-0.09
37	3.63	0.59	-0.18	2.82	1.59	-0.08
38	3.64	0.94	-0.16	2.79	1.95	-0.05
39	3.54	1.39	-0.13	2.67	2.40	-0.01
40	3.33	1.95	-0.08	2.44	2.96	0.04
41	2.99	2.62	-0.02	2.08	3.61	0.10
42	2.54	3.36	0.05	1.56	4.38	0.17
43	2.00	4.15	0.13			
44	1.44	4.93	0.21			
45	0.93	5.65	0.29			

Table A15. Model-scale powering comparison: AxWJ vs. BSS

		JHSS Axial W	/aterjet (AxW	J) Model-	Scale Poweri	ing at Correc	ted Ship P	ropulsion Po	ir	
NS	Rotor	INBD/Shaft	OTBD/Shaft	Total	INBD/Shaft	OTBD/Shaft	Total	INBD/Shaft	OTBD/Shaft	Total
(knots)	RPM	T (lbs)	T (lbs)	T (Ibs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	(hP)	(hP)	SHP
15	886	1.67	1.94	7.22	1.39	1.13	5.06	0.020	0.016	0.07
20	1196	3.08	3.36	12.89	2.50	2.08	9.17	0.048	0.039	0.17
25	1485	4.73	5.03	19.53	3.73	3.21	13.86	0.088	0.076	0.33
30	1707	6.19	6.51	25.40	4.71	4.22	17.86	0.128	0.114	0.48
36	2068	9.07	9.41	36.98	6.62	6.24	25.72	0.217	0.205	0.84
39	2372	11.99	12.36	48.71	8.47	8.12	33.18	0.319	0.306	1.25
42	2730	16.10	16.47	65.14	10.99	10.76	43.49	0.476	0.466	1.88

		JHSS Base	eline Shaft&St	rut (BSS)	Model-Scale	Powering at	Ship Prop	ulsion Point		
NS	Propeller	INBD/Shaft	OTBD/Shaft	Total	INBD/Shaft	OTBD/Shaft		INBD/Shaft	OTBD/Shaft	Total
(knots)	RPM	T (lbs)	T (lbs)	T (lbs)	Q (in-lbs)	Q (in-lbs)	Q (in-lbs)	(hP)	(hP)	SHP
15	322	1.36	0.90	4.52	2.54	2.40		0.013	0.012	0.05
20	419	2.21	1.44	7.30	4.40	3.88		0.029	0.026	0.11
25	522	3.44	2.27	11.42	96.9	5.81		0.058	0.048	0.21
30	620	4.78	3.18	15.92	9.87	8.03		0.097	0.079	0.35
36	740	6.95	4.89	23.68	14.62	12.08		0.172	0.142	0.63
39	818	9.23	98.9	32.18	19.04	16.07		0.247	0.208	0.91
42	911	12.54	9.77	44.62	24.68	21.32		0.357	0.308	1.33

Total 1		OTBD T
Δ	77	(%) ∇
7.1		115.5
		133.6
	121.7	
	104.8	
	92.5	
	80.2	29.9 80.2
	9.89	
	102.4	31.2 102.4

This page intentionally left blank.

APPENDIX B AxWJ Model 5662 Photographs

	AxWJ MODEL 5662 PHOTOGRAPHS	Page
B1.	AxWJ Model 5662: construction and hardware installation	ВЗ
B2.	AxWJ Model 5662: Inlets covered for Bare Hull	B8
B3.	AxWJ Model 5662: LDV nozzles installed, inlets open	B9
B4.	AxWJ Model 5662: Powering tests underway with and without LDV system operating	
	(speeds unrecorded)	B1

Fig B1. AxWJ Model 5662: construction and hardware installation

Fig B1. AxWJ Model 5662: construction and hardware installation - continued

Fig B1. Pre-Test, construction and hardware installation - continued

Fig B1. AxWJ Model 5662: construction and hardware installation - continued

Fig B1. AxWJ Model 5662: construction and hardware installation - continued

Fig B2. AxWJ Model 5662: Inlets covered for Bare Hull

Fig B3. AxWJ Model 5662: LDV nozzles installed, inlets open

Fig B3. AxWJ Model 5662: LDV nozzles installed, inlets open - continued

Fig B4. AxWJ Model 5662: Powering tests underway with and without LDV system operating (speeds unrecorded)

Fig B4. AxWJ Model 5662: Powering tests underway with and without LDV system operating (speeds unrecorded) - continued

Fig B4. AxWJ Model 5662: Powering tests underway with and without LDV system operating (speeds unrecorded) - continued

This page intentionally left blank

INITIAL REPORT DISTRIBUTION

No. of	Copies		
Print	PDF*	Office	Individual
2	2	ONR 331	Dr. Ki-Han Kim, Dr. Pat Purtell
-	3	PMS 385	W. Davison, J. Goldberg, D. Liese
-	1	SEA 05D1	S. Wynn
-	1	SEA 05H	J. Schumann
1	3	CSC	J. Bohn, J, Slager, O. Clark,
			E. Morris (print copy)
1	-	DTIC	
		NSWCCD Code	Individual
-	1	2000	C. Dicks
-	1	2240	C. Kennell
	1	2410	A. Anderson
-	2	2420	S. Fung, R. Lamb
-	1	3452 (Library)	
-	-	5010 (w/o enclosure)	
~=	1	5030	S. Jessup
1	-	5060	D. Walden
-	1	5104	S. Carpenter
2 2	-	5200	5200 Office Files
2	2	5200	D. Cusanelli, G. Karafiath
-	4	5400	D. Fry, M. Wilson, T. Michael, O. Scherer
-	1	6540	E. Devine

Total No. of
Copies
Print PDF*
9 25